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Abstract 
In the paper the procedure, based on hidden Markov chains with 

conditional normal distributions and uses algorithms such as time series 

decompositions (STL), Baum-Welch algorithm, Viterbi algorithm and Monte 

Carlo simulations, is proposed to analyze data out of the business tendency 

survey conducted by the Research Institute for Economic Development, 

Warsaw School of Economics. There are considered three types of models, 

namely, with two-state, three-state and four-state Markov chains. Results of 

the procedure could be treated as an approximation of business cycle turning 

points. 

The performed analysis speaks in favor of multistate models. Due to, 

an increasing with the number of states, numerical instability, it is not obvious 

which model should be considered as the best one. For this purpose various 

optimization criteria are taken into consideration: information criteria (AIC, 

BIC) and the maximum-likelihood, but also frequency of obtaining a given 

set of parameters in the Monte Carlo simulations. The results are confronted 

with the turning points dated by OECD. The tested models were compared in 

terms of their effectiveness in detecting of turning points. 

The procedure is a step into automation of business cycle analysis based 

on results of business tendency surveys. Though this automation covers only 

some models from millions of possibilities, the procedure turns out to be 

extremely accurate in business cycle turning points identification, and the 

approach seems to be an excellent alternative for classical methods. 
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1. Introduction 

The analysis of business cycles is one of the primary sources of 

assessment of current and future economic situation. Certainly, the future 

level of economic development depends on many factors such as the gross 

domestic product, exports, rate of employment, level of production or other, 

often self-constructed indicators. Many different econometric methods are 

used to identify turning points. These are mainly ARIMA-based methods 

(Cleveland, 1972; Bell, 1984; Wildi & Schips, 2005) that are often used with 

the filters such as Hodrick-Prescott (1997), or Christiano-Fitzgerald (2003). 

Another class of econometric methods widely used in business cycles analysis 

is a logistic regression (Lamy, 1997; Birchenhall et al., 1999; Chin et al., 

2000; Sensier et al., 2004). There is also a group of spectral methods based 

on the Fourier transform (see Addo et al., 2012). A construction of any 

econometric or spectral method, however, is problematic due to the bulk of 

various data as well as due to the potential presence of unspecified variables 

in developed models or simply restrictive assumptions about the model and 

input data. Thus, even unequivocal identification of turning points in an 

economy is not an easy task. As an alternative to these approaches, Markov 

models could be used (see Hamilton, 1994; Bhar & Hamori, 2004; Koskinen 

& Oeller, 2004; Mamon et al., 2007). Based on their non-deterministic 

character and weak assumptions, in many fields one can get at least 

comparable or often better result. 

The paper describes a procedure to analyze data out of the business 

tendency survey in the manufacturing industry in Poland. The survey is 

conducted by the Research Institute for Economic Development, Warsaw 

School of Economics. The procedure is based on hidden Markov chains with 

conditional normal distributions and uses algorithms such as time series 

decompositions (STL), Baum-Welch algorithm, Viterbi algorithm and Monte 

Carlo simulations. There were considered models with two-state, three-state 

and four-state Markov chains. As an input not only answers to individual 

questions from the survey were analyzed, but also panel data were included, 

namely time series that consist of answers to a pair of survey questions. The 

more states, the better fit, but also the more numerical instability and longer 

time of computations. As an optimization criteria in the procedure, 

information criteria (AIC, BIC), maximum-likelihood and frequency of 

obtaining a given set of parameters in the Monte Carlo simulations are 

considered. After finding sets of parameters of suitable models the Viterbi 

path is calculated. It is the path of a state with the highest probability (due to 

the model parameters). Results of the procedure could be treated as an 

approximation of business cycle turning points. Obviously, it is sometimes 
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necessary to consider a time delay between answers of survey respondents 

and changes in business activity, but for many of the examined input data it 

is a clear pattern and a strong premise to use it as a leading indicator. The 

results were confronted with the dating of business cycle turning points 

identified by OECD. The tested models were compared in terms of their 

effectiveness in detecting of coming changes in business situation. The study 

speaks in favor of multistate models. Furthermore, the use of panel data is 

justified, and in many cases recommended, due to the higher quality of the 

fitted model. 

Although hidden Markov models are well-established in theory and 

practice of business cycles analysis (see Abberger & Nierhaus, 2010), their 

usage is mainly limited to two states. Generalization to multistate chains gives 

opportunity to deal with more flexible and efficient models. The second issue 

is the exploration of the Viterbi paths. The Viterbi algorithm is often used in, 

for example, pattern recognition and DNA sequencing but rather rarely 

exploited in macroeconomic applications. Such a merger between multistate 

hidden Markov chains and the Viterbi paths is innovative in the area of 

business tendency surveys analysis. 

The paper is composed of six sections. The short description of hidden 

Markov models is given in Section 2. Section 3 presents the description of 

data, whereas Section 4 specifies the procedure. Section 5 presents the results 

from numerical experiments exploring the usefulness of the procedure. The 

paper sums up with conclusions in Section 6. 

2. Hidden Markov models 

Hidden Markov models (HMM) are widely used in analysis of 

processes and patterns in many fields. They are an excellent tool when one 

can distinguish two layers: one visible which is used to uncover the second, 

a hidden layer. Therefore it is common in pattern recognition: the first layer 

is an observed sequence of emissions, whereas the second layer is a sequence 

of states (symbols) which we do not know but need to discover. Application 

in speech, handwriting or gesture recognition (Jelinek, 1997) are well known 

examples. Markov models are also one of basic tools in analysis of data in 

bioinformatics (Durbin et al., 1998). In econometrics HMM are mostly used 

to analyze financial and macroeconomic time series (Cappé  et al., 2005). 

A hidden Markov model could be defined as a stochastic process (see 

Cappé et al., 2005). It could be also considered as the simplest dynamic 

Bayesian network (Ghahramani, 2001). It is possible to give an equivalent 



8     Michał Bernardelli 

 

 

definition that uses the terminology from the field of finite-state probabilistic 

machine (or finite-state probabilistic automaton) (Rabin, 1963). 

Let SX be a finite k-element set, so called the set of states, with the 

specified state S1 treated as an initial state. We assume therefore that k is 

greater than zero. In other words, we assume that the set of states is 

non-empty. Furthermore, let: 

 

 𝑃 = [𝑝𝑖,𝑗]𝑖,𝑗=1
𝑘

  (1) 

 

be a matrix of probabilities of transitions, where pi,j is the probability of 

transition from the state i to the state j. It is assumed that the transition matrix 

is stochastic, that is for every i: 

 

 ∑ 𝑝𝑖,𝑗
𝑘
𝑗=1 . (2) 

 

The Markov chain is an ordered triple (SX, S1, P). The characteristic feature 

of the Markov chain is so called lack of memory, which means that the next 

state depends only on current state but not on the whole history of getting to 

this state. 

Hidden Markov models are known in mathematics and computer 

science as the probabilistic automaton. They are an extension of the Markov 

chain for an additional alphabet Σ, symbols of which are emitted in the 

specific state with the given probability distribution. We assume that in every 

state some symbol is emitted. For the finite alphabet the HMM in the state 

𝑖 ∈ 𝑆𝑋 is emitting the symbol 𝑥 ∈ Σ with the probability 𝑒𝑖(𝑥), and, next, it 

changes the state to j with the probability 𝑝𝑖,𝑗. In the case of continuous 

probabilities by 𝑒𝑖(𝑥) a probability distribution is meant, e.g. Gaussian. In 

both cases observable are only the symbols emitted by the model, but the 

current state of the hidden Markov chain remains unobservable (see Figure 1). 

Hidden Markov chains with a k-element set of states are simply called 

k-state HMM. In the paper two-, three- and four-state models are considered. 

Also, an assumption on the probability distribution of emitting the symbol is 

taken. For every state symbols are emitting with normal distribution 

probability. 

Each hidden Markov model thus is defined by these parameters: 

 k – number of states, 

 set of symbols (alphabet) Σ, where n is a number of symbols, 

 initial probabilities for every state (k parameters), 
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 transition matrix P, that is a matrix of probabilities of transitions 

between two states (k2 parameters), 

 parameters of normal distribution defining probability of emission 

of symbol in each state (2kn parameters). 

 

 

Figure 1. Scheme of a three-state hidden Markov model with a pair of normal 

probability distributions of emitting symbols. 

Source: own compilation. 

 

3. Description of the input data 

The input data is balances taken from business tendency surveys in the 

manufacturing industry conducted monthly by the Research Institute for 

Economic Development, Warsaw School of Economics. Each month the 

survey consists of eight questions: 

Q1 – volume of production 

Q2 – volume of orders 

Q3 – volume of export orders 

Q4 – finished goods inventories 

Q5 – selling prices of products 
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Q6 – level of employment 

Q7 – financial standing 

Q8 – general economic situation in Poland, 

each one in two versions: retrospective, concerning what happened in the last 

3-4 months (‘AS-IS’), and prospective, concerning what is expected to 

happen in the next 3-4 months (‘TO-BE’). For the calculations data from 

March 1997 to February 2014 were taken. Having analyzed results of 

numerical experiments, it has been found that models based on respondents’ 

expectations are less accurate and worse fit than models including AS-IS 

balances. The same experiments (Bernardelli & Dędys, 2012) suggest that 

seasonal and random components should be filtered out of the input time 

series. Therefore the data were pre-processed. In order to decompose the raw 

time series the procedure STL from the R package was used. STL procedure 

is an implementation of an algorithm based on local weighted regression 

method called “loess” (see Cleveland, 1990). Figure 2 presents the 

decomposition of Q1 balance, where: 

 

data = seasonal + trend + irregular component (remainder), 

 

and Figure 3 illustrates the decomposition of Q7 balance. 

 

 

Figure 2. Time series decomposition with the STL procedure for Q1. 

Source: own computation. 
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Figure 3. Time series decomposition with the STL procedure for Q7. 

Source: own computation. 

 

Basic descriptive statistics for these balances, before and after 

decomposing them, are given in Table 1. 

4. Description of the procedure 

The procedure takes on decomposed time series (only trend) and returns 

the path of states that has the highest probability in the whole considered 

period. For the sake of numerical stability (Bernardelli, 2012) and ease of 

interpretation computation was restricted to models with two, three and four 

states. 

In the case of a two-state hidden Markov chain it is assumed that the 

zero state is associated with periods determined by the respondents as worse, 

while the state denoted by one is related to the situation assessed as better. In 

the case of three-state chains there is an additional state ½ symbolizing the 

transient situation between states 0 and 1. It is the state designed for situations 

uncertain and difficult to unambiguous classification. The space of states of 

four-state hidden Markov chains has the form {0, ⅓, ⅔, 1}. State 0 indicates 

strong economic downturn, state 1 indisputable economic recovery, while 

states ⅓ and ⅔ are transients. The state ⅓ should be interpreted as indicating 

the uncertain status of worse economic situation in the country, whereas the 

state ⅔ suggests rather better economic conditions. 
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Table 1. Descriptive statistics for the questions about Level of production and 

Financial standing. 

Statistics 

Question 1 

Level of production 

data seasonal trend remainder 

minimum -25.30 -10.83 -3.24 -25.67 

1-quantile -7.95 -5.28 -0.79 -5.52 

median 0.30 -0.94 -0.01 -0.07 

mean -0.09 -0.05 -0.03 -0.01 

3-quantile 6.90 3.10 0.76 5.16 

maximum 40.10 10.07 3.47 35.14 

     

Statistics 

Question 7 

Financial standing 

data seasonal trend remainder 

minimum -16.20 -4.74 -3.09 -15.21 

1-quantile -3.05 -3.01 -0.80 -3.51 

median 0.00 0.41 0.05 -0.05 

mean 0.053 -0.003 0.033 -0.015 

3-quantile 2.90 1.90 0.90 3.76 

maximum 14.70 5.35 2.48 11.59 

Source: own calculations. 

 

The important assumption was made about probabilities of the 

transition matrix. Non-zero probabilities are permitted only between the 

adjacent states. This is the reflection of economically justified situation of 

gradual changes in the economy. Of course, this assumption is meaningless 

in the case of two states and makes sense only when the number of states is 

greater than two. 

The procedure of business cycle turning points identification based on 

hidden Markov models can be described in the following steps: 

(1) pre-processing the input data: choose the time series (a single or a pair 

of questions from the survey), and decompose them (using STL 

procedure); 

(2) choose M initial approximations of parameters of conditional normal 

distributions (parameters for every state and each of the input time 

series); initial points could be chosen randomly; 



The procedure of business cycle turning points identification …            13 

 

 

 

 

(3) for each point from the step (2) use the Baum-Welch algorithm to 

estimate parameters of the hidden Markov model; based on the 

expected values of conditional distributions find the correct order of 

states; 

(4) group the parameters of all calculated models (at most M results) on the 

basis of – rounded to one decimal place – expected values of conditional 

distributions; for each group define a representative model with 

parameters being averages of the respective parameters of models from 

this particular group; 

(5) for representative models from each group calculate the most probable 

path of a hidden Markov chain using the Viterbi algorithm; 

(6) based on various optimization criteria or/and comparison with the 

reference time series choose the best HMM model. 

Now let’s present each step of the procedure in more detail way. The 

first step was described in the previous section. It is worth to emphasize that 

it is possible to take any combination of time series as an input – even answers 

to all eight questions from the survey. Although adding more data could 

improve model fitting, it is not a rule (Bernardelli, 2013b). 

The second step of the procedure concentrates on choosing the right 

initial parameters to the model. For the k-state hidden Markov chain the 

following parameters need to be defined: 

 initial probabilities for each of k states – in the procedure all equal to 

1/k; 

 the transition matrix P – with zero probabilities of transition between 

non-adjacent states only 4 + 3(k - 2) non-zero elements of the matrix 

need to be specify. By default probabilities are set as follows: 

 

𝑝𝑖,𝑗 = {

1

2
   𝑖 = 1, 𝑗 = 1,2;    𝑖 = 𝑘, 𝑗 = 𝑘 − 1, 𝑘

1

3
   𝑖 = 2,3, … , 𝑘 − 1, 𝑗 = 𝑖 − 1, 𝑖, 𝑖 + 1

. (3) 

 

In the procedure for k = 4 matrix has the form: 
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𝑃 =

(

 
 
 

1

2

1

2
     0 0

1

3

1

3
     

1

3
0

0
1

3
     

1

3

1

3

0 0     
1

2

1

2)

 
 
 

; (4) 

 

 parameters (𝜇, 𝜎) of independent normally distributed1 n random 

variables defining probability of emission of a symbol in each state, 

where 𝜇 = [𝜇1, 𝜇2, … , 𝜇𝑛]
𝑇 is a vector of expected values and 𝜎 =

[𝜎1, 𝜎2, … , 𝜎𝑛]
𝑇 – vector of standard deviations. There are 2kn 

parameters that determine the most, final values of model 

parameters. In the procedure these initial values are chosen from the 

following intervals: an expected value 𝜇𝑖,𝑗 ∈ [𝜇𝑖,𝑗̅̅ ̅̅ − 3𝜎𝑖,𝑗̅̅ ̅̅ , 𝜇𝑖,𝑗̅̅ ̅̅ +

3𝜎𝑖,𝑗̅̅ ̅̅ ] and a standard deviation 𝜎𝑖,𝑗 ∈ [0.5𝜎𝑖,𝑗̅̅ ̅̅ , 3𝜎𝑖,𝑗̅̅ ̅̅ ], where 𝜇𝑖,𝑗̅̅ ̅̅  and 

𝜎𝑖,𝑗̅̅ ̅̅  are empirical parameters calculated for every state (i=1,2,…,k) 

and each of input time series (j=1,2,…,n). Of course, intervals could 

be wider, but according to three sigma rule for the normal 

distribution in high probability they cover the vast majority of 

possible values. 

For the computational purpose all intervals which contain values of 

possible parameters must be discretized. Let us consider in more detail 

discretization of parameters 𝜇 and 𝜎. Let 𝑚𝑖,𝑗
𝜇
 and 𝑚𝑖,𝑗

𝜎  be numbers of nodes 

in the interval for respectively an expected value and a standard deviation of 

the j-th input time series of the i-th state. The number of all nodes M in the 

discretization grid is defined by the formula: 

  

𝑚 = ∏ ∏ 𝑚𝑖,𝑗
𝜇
𝑚𝑖,𝑗
𝜎𝑛

𝑗=1
𝑘
𝑖=1 .  (5) 

 

Mesh nodes may be distributed uniformly, but it is not always the best 

possible choice. Assuming that n = 1 and for all i = 1,2,…,k values 𝑚 =
 𝑚𝑖,1

𝜇
= 𝑚𝑖,1

𝜎  number of nodes in the grid for different numbers of states are 

given in Table 2. For a pair of questions (n = 2), numbers of nodes are squares 

of numbers given in  this table. 

 

                                                   
1 One may consider other probability distributions than a multivariate normal distribution. 
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Table 2. Number of nodes for different sizes of 

discretization grid and different numbers of states in 

hidden Markov chain for a single question. 

M k = 2 k = 3 k = 4 

2 1.60×101 6.40×101 2.56×102 

5 6.25×102 15.6×103 3.91×105 

10 10.0×103 10.0×105 10.0×107 

20 1.60×105 6.40×107 25.6×109 

50 6.25×106 15.6×109 39.1×1012 

100 10.0×107 10.0×1011 10.0×1015 

Source: own calculations. 

 

Each of the nodes is an initial point for calculations performed in the 

third step, in which the Baum-Welch algorithm is used to estimate HMM 

parameters. In the implementation the procedure fit from the depmixS4 

library of the package R was used. The Baum-Welch algorithm is an iterative 

method that maximizes the expected value (Baum et al., 1970). More 

precisely it is a representative of an Expectation-Maximization class of 

methods that calculates maximum likelihood. Due to the way of finding the 

maximum, the Baum-Welch algorithm should be classified as a greedy 

algorithm. Thus, obtained solutions may be far from optimal. There is no 

guarantee that the result is really a global maximum. Depending on the initial 

parameters the solution found by the algorithm may be only the local 

maximum. This is why the algorithm is used repeatedly for the same input 

data, but different initial parameters. Due to the high dimension of the grid, 

a number of nodes is increasing exponentially with an increasing number of 

states as well as with an increasing size of the panel data (see Table 2). The 

computation time is proportional to the number of nodes M. Therefore to get 

the result in a reasonable time the mesh used in the procedure must by rather 

thick. This is the reason why some random initial points are chosen. In this 

way the probability of finding local minimum that is not the global one is 

significantly decreased. This added randomness is in fact equivalent to the 

Monte Carlo approach and each use of the Baum-Welch algorithm to the 

Monte Carlo simulation. 

Calculated parameters of a model, due to numerical rounding, are 

almost always unique. However the differences between parameters of two 

models could be really small, for example they can differ on the eighth 
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decimal place. All models are assigning to groups on the basis of rounded to 

one decimal place expected values of conditional distributions. All respective 

parameters of models in a particular group are average. Parameters obtained 

in this way define the representative model in each group. 

In the fifth step of the procedure for representative models from every 

group the most probable path of a hidden Markov chain using the Viterbi 

algorithm (Viterbi, 1967) is calculated. The implementation from the 

posterior procedure included in the package R was used. The Viterbi 

algorithm is an example of dynamic programming algorithm. The output data 

is the most likely sequence of hidden states which are commonly called the 

Viterbi path. 

The purpose of the last step of the procedure is to choose the best model 

and, connected with it, the Viterbi path from representative models of all 

considered group. The choice could be made based on various optimization 

criteria as well as on comparison with the reference time series. The criteria 

used in the procedure are: 

 Akaike information criterion (AIC), 

 Bayesian information criterion (BIC), 

 value of likelihood function, 

 frequency of obtaining a given set of parameters in the Baum-Welch 

algorithm (size of each group). 

The Viterbi paths were also compared with the reference time series, 

that is with dating of turning points in Poland evaluated by OECD. In order 

to verify the usefulness of the procedure numerical experiments were 

performed. Specification of the experiments and their results are described in 

the next section. 

5. Numerical experiments 

Many numerical experiments were conducted using the procedure 

described in the previous section. They were designed to answer research 

questions such as: 

1) usefulness of respondents’ expectations (Bernardelli & Dędys, 2012) 

– it turns out that TO-BE balances do not rather increase the accuracy 

of the detection of turning points; 

2) impact of the number of states on the quality of the fit (Bernardelli 

& Dędys, 2012) – adding one or two states to the model seems to 

enrich business cycle analysis and the accuracy of the dating of 

turning points; 
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3) size of the panel data on input (Bernardell, 2013a) – increasing the 

number of input time series could improve, and in many cases it 

does, the quality of the business cycle approximation; 

4) effect of optimization criteria for the quality of the fit (Bernardelli, 

2013b) – procedure of the turning points identification should be 

treated as a multi-criteria optimization.  Using information criteria 

doesn’t always lead to an optimum hidden Markov model and the 

Viterbi path; 

5) comparison of a non-deterministic version with the deterministic one 

(Bernardelli, 2014) – because of the so called ‘the curse of 

dimension’ Monte Carlo simulations are the only achievable way of 

getting the reliable fit in the reasonable time; 

6) stability of the computations (Bernardelli, 2012) – numerical 

stability of the procedure worsens with the increasing number of 

states in the model, but – in comparison with the other Monte Carlo 

algorithms – should be considered as highly acceptable; 

7) usefulness in other fields like transport analysis (Dorosiewicz, 2013) 

– the idea of the turning points identification procedure and the 

implementation of the whole algorithm was found very promising 

for other than business tendency surveys input data. 

In the numerical experiments all the balances as well as all their pairs 

were examined. The analysis was focused on AS-IS balances. There were 

considered hidden Markov chains with two, three and four states. The size of 

the mesh was chosen such that the number of nodes was equal to 10.000. In 

addition 1.000 initial points was randomly chosen. It means, that the 

Baum-Welch algorithm (the third step) for every input data was executed M 

= 11.000 times. In order to compare HMM path xt with the reference time 

series rt the following measure was used: 

 

𝜌(𝑥, 𝑟) = ∑ |𝑟𝑡 − 𝑥𝑡|
𝑇
𝑡=1 , (6) 

 

where T is the length of the considered period. Lower values of the indicator 

ρ mean closer similarity between the Viterbi path and the reference time 

series. Obviously, it is reasonable to take into consideration a time delay 

between the answers of the survey respondents and changes in the economy. 

The measure that takes into account the possibility of a shift between time 

series could have the following form: 
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𝜌̃(𝑥, 𝑟, 𝑠) =
1

𝑇−|𝑠|
∑ |𝑟𝑡 − 𝑥𝑡+𝑠|
𝑛2
𝑡=𝑛1

, (7) 

 

where 𝑛1 = max {0, 𝑠}, 𝑛2 = min {𝑇, 𝑇 + 𝑠} and 𝑠 ∈ {−3,−2,−1,0,1,2,3}. 
The maximum shift is therefore assumed to be one quarter. The measure ~

should be considered as an average equivalent of the measure  . The results 

of the numerical experiments are gathered in Table 32. 

 

Table 3. Results of numerical experiments: values of optimization criteria and 

comparison measures. 

Questions 
Number 

of states 
AIC BIC logLik 

Frequency 

[%] 
  Shift ~  

1 

2 states 1261 1284 -623 99 29.0 1 0.13 

3 states 1168 1214 -570 96 39.5 2 0.18 

4 states 1119 1195 -536 73 40.3 1 0.19 

2 

2 states 1390 1413 -688 98 29.0 0 0.14 

3 states 1296 1343 -634 92 44.0 2 0.20 

4 states 1244 1320 -599 84 49.7 3 0.22 

4 

2 states 1392 1415 -689 100 45 1 0.21 

3 states 1259 1305 -615 72 51.5 2 0.24 

4 states 1158 1235 -556 19 69.0 2 0.32 

7 

2 states 1317 1340 -652 99 37.0 3 0.15 

3 states 1212 1259 -592 55 52.0 3 0.22 

4 states 1120 1196 -537 91 57.7 3 0.26 

1 + 2 

2 states 2611 2647 -1294 99 29.0 0 0.14 

3 states 2384 2451 -1172 66 42.5 3 0.19 

4 states 2237 2340 -1088 11 48.3 2 0.22 

1 + 6 

2 states 2669 2705 -1323 100 35.0 0 0.17 

3 states 2513 2580 -1237 72 50.0 2 0.23 

4 states 2409 2512 -1173 52 60.0 0 0.31 

1 + 7 

2 states 2556 2592 -1267 100 30.0 1 0.14 

3 states 2412 2479 -1186 38 43.5 3 0.20 

4 states 2266 2369 -1102 63 57.3 3 0.26 

Source: own calculations. 

                                                   
2 For the clarity of the table, there has been presented the results only of selected questions 

and their combinations. 
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All calculated values of ~ are close to the ideal zero value and the 

calculated Viterbi paths seem to indicate turning points at the same time or in 

advance comparing to the reference time series. The Viterbi paths for 

exemplary input data with references to OECD turning points time series for 

Poland are shown in Figures 4-6 (Q1 and Q7). 

 

Figure 4. Comparison OECD reference time series with the Viterbi path for 

2-state HMM for Q1 and Q7. 

Source: own computation. 

 

 

Figure 5. Comparison OECD reference time series with the Viterbi path for 

3-state HMM for Q1 and Q7. 

Source: own computation. 
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Figure 6. Comparison OECD reference time series with the Viterbi path for 

4-state HMM for Q1 and Q7. 

Source: own computation. 

 

The Viterbi path for the two-state hidden Markov model declares 

almost all turning points with sometimes a significant delay of few months. 

One can also see that one phase of contraction has been missed. Adding the 

third state to the HMM seems to improve the detection of turning points. First 

of all, the missing contraction is captured. Although the false, but weak 

possibility of expansion is also signaled, and the rest of up- and downturns 

are announced in advance or with small delays in almost all cases. Situation 

looks even better for four states. False signals are weakened and the dating of 

the turning points is even more ahead of time than in case of the three-state 

path. 

 

6. Summary 

Based on the results of numerical experiments it is justified to draw the 

following conclusions about the usefulness of the described procedure. 

Definitely, models computed by the procedure provide satisfactory 

approximation of business cycle turning points. It is also a flexible and 

efficient way of an analysis of business tendency surveys balances. Main 

advantages are ease of generalization, minimal assumptions and high 

accuracy of the fit. 

The procedure exploits not only multistate hidden Markov chains and 

panel data on input, but also an effective Viterbi algorithm. The procedure is 

not meant to be a tool for a complete automation of an analysis of changes in 

business activity based on business tendency surveys in the manufacturing 
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industry in Poland. It was, however, developed to choose from millions of 

possible models the ones to further analyze. Such an approach turns out to be 

very useful and the results of the procedure extremely accurate in business 

cycle turning points identification. Thus, it is an excellent alternative for 

classical methods and definitely it is worth to continue work in this subject. 

The next major step would be to add TO-BE balances to the procedure. 
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