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Abstract 
In the paper we propose to use the so-called Viterbi paths for mapping 

relationships between survey data. The Viterbi path is the most probable 

sequence of states of a hidden Markov chain in a Markov Switching model 

(MS). The approach is widely taken to recognize speech or to analyze DNA, 

but is almost absent in econometrics, despite the great role MS models play 

in non-linear modeling. The main advantages of the Viterbi paths are: (1) 

intuitive interpretation of results they give and (2) their wide applicability. 

They have, however, some disadvantages too. It turns out that the models we 

have built do not necessarily fit to business tendency survey data, and the 

interpretation of the hidden states might be unclear. 
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1. Introduction 

The Viterbi paths are strongly connected with Markov Switching models and 

problems of pattern recognition. They can be regarded as a powerful tool for 

comparison of univariate and multivariate macroeconomic time series. Their 

usefulness has been shown in detecting turning points, or identifying periods 

of a certain level or a change rate of economic phenomena under 

consideration (Bernardelli, Dędys, 2014). 

The goal of this paper is to show a variety of applications of the Viterbi 

paths. We study the data that comes from the business tendency survey the 

Research Institute for Economic Development, Warsaw School of Economics 

(RIED) conducts in the Polish manufacturing industry every month. 

Specifically, we analyze time series of the state balances of: production, total 

orders, finished goods inventories, selling prices, employment and financial 

standing of manufacturers. Any detailed description of business situation in 

the industry, reported by respondents of the survey, is beyond the scope of 

the paper. We mainly focus on presenting how the Viterbi paths work. 

The Viterbi paths, obtained from the univariate time series of the 

balances, answer the following questions: (1) Is it possible to separate sets of 

time series which are strongly synchronized? (2) Is there any leading one out 

of the balances? (3) Are there any ‘local leaders’, that is, the time series which 

lead downturns or upturns only? and, finally, (4) Is there any recommendation 

to apply the two-, three- or four-states Viterbi paths? 

The Viterbi paths can be a valuable tool to analyze bivariate time series 

as well. As Bernardelli and Dędys (2015) show, they could be applied to 

evaluate business cycle synchronization, especially when ‘weaker’ vs 

‘stronger’ economies are considered. With this in mind, we focus on the two 

following problems: (1) Are the changes, that take place in an economy, 

noticed by manufacturers earlier than the corresponding changes in their 

firms, or vice versa? (2) What is the order of signaling when the balances 

related to leading and coincident indicators are taken into account? 

Unfortunately, in the two-dimensional analysis some difficulties may appear, 

i.e., unlike the one-dimensional analysis, a universal interpretation of the 

states in the Viterbi path is not plausible. Furthermore, it is not always 

possible to estimate a model for selected pairs of the balances. We briefly 

discuss these problems. 

The paper is organized as follows. Section 2 is devoted to brief 

discussion of the basic terminology and methodology. The results of the 

empirical analysis are presented in Section 3. The paper conclude with 

a summary of the key findings in Section 4. 
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2. Markov Switching models and the Viterbi path 

In this paper, we focus on the simplest type of a Markov Switching model 

(MS). Namely, we analyze conditionally independent observable variables 

with parameters of distribution driven by a homogeneous Markov chain 

(MC). More precisely, we consider a partially observable process 

{(𝑋𝑡, 𝑌𝑡)}𝑡=1
∞ , satisfying the following conditions: 

1. Unobservable component {𝑋𝑡}𝑡=1
∞  is a homogenous Markov chain 

with a finite state space 𝑆𝑋. 

2. Observable random variables 𝑌1, 𝑌2, …, 𝑌𝑡, given (𝑋1, 𝑋2, … , 𝑋𝑡), are 

conditionally independent, and the distribution of 𝑌𝑡, given this 

condition, depends only on a random variable 𝑋𝑡. 

The Markov chain of that type of MS models is called the hidden 

Markov chain. The models of the type are known as hidden Markov models, 

and appeared in the literature in the 1960s, i.e., much earlier than the first 

work of Hamilton (Cappé et al., 2005).  

One of the major issues involved in the application of MS is as follows. 

Having information about the realization of observable variables 𝑌𝑡 in some 

period of time (say from 1 to 𝑇), one could try to estimate a state of 

unobservable MC at a fixed time 𝑡, 𝑡 ≤ 𝑇. The most common approach is to 

use the smoothed probability 

 

𝑤𝑡(𝑖) = 𝑃(𝑋𝑡 = 𝑖|𝑌1 = 𝑦1, 𝑌2 = 𝑦2, … , 𝑌𝑇 = 𝑦𝑇), (1) 

 

or the filtered probability 

 

𝑓𝑡(𝑖) = 𝑃(𝑋𝑡 = 𝑖|𝑌1 = 𝑦1, 𝑌2 = 𝑦2, … , 𝑌𝑡 = 𝑦𝑡), (2) 

 

to deal with this problem. 

There are several procedures for obtaining the assessment of states of 

the hidden Markov chain in time t, which use estimates of the filtered or 

smoothed probabilities (Chauvet, Hamilton, 2005; Harding, Pagan, 2002). In 

the simplest case argmax
𝑖

𝑤𝑡(𝑖) or argmax
𝑖

𝑓𝑡(𝑖) give this assessment. 

Unfortunately, such ‘local decoding’ or ‘step-by-step decoding’ of the path 

of states of the hidden Markov chain may be ineffective, especially in the case 

of a larger state space. 

In this paper, we use an alternative method to solve that problem. 

Namely, we are looking for the most likely path of MC in the whole period 

under the study. Formally speaking, we determine the path (𝑥1
∗, 𝑥2

∗, … , 𝑥𝑇
∗ ) ∈

𝑆𝑋
𝑇 such that 
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𝑃(𝑋1 = 𝑥1
∗, 𝑋2 = 𝑥2

∗, … , 𝑋𝑇 = 𝑥𝑇
∗ |𝑌1 = 𝑦1, 𝑌2 = 𝑦2, . . , 𝑌𝑇 = 𝑦𝑇)

= max
(𝑥1,𝑥2,…,𝑥𝑇)∈𝑆𝑋

𝑇
{𝑃(𝑋1 = 𝑥1, 𝑋2 = 𝑥2, … , 𝑋𝑇 = 𝑥𝑇| 

𝑌1 = 𝑦1, 𝑌2 = 𝑦2, … , 𝑌𝑇 = 𝑦𝑇}. 

(3) 

 

This sequence, which is more likely, is called the Viterbi path9. The 

Viterbi paths concept seems to be rarely applied in an analysis of economic 

data, and appears to be limited to the two-state models only (Boldin, 1994). 

In this paper, we consider MS with an observable variable 𝑌𝑡 having 

univariate or bivariate Gaussian conditional distribution and two, three or four 

hidden states. To be clear, referring to a particular type of such a model, we 

use the symbol MS(k, n), where k is the dimension of observable time series 

(k = 1, 2) and n is a number of states of underlying MC (n = 2, 3, 4). 

In the case of MS(1,2) we consider 𝑆𝑋 = {0, 1} and 

 

𝑌𝑡|𝑋𝑡=0~𝑁(𝜇0, 𝜎0), 𝑌𝑡|𝑋𝑡=1~𝑁(𝜇1, 𝜎1), (4) 

 

where 𝜇0 < 𝜇1. Obviously, the state 0 corresponds to periods of the lower 

level, and the state 1 relates to the higher level (of the variable under the 

study).  

The analysis can be enhanced by introducing one more state, which 

corresponds to unclear situation, a transition from the poor to the good state 

of the economy, or vice versa, a kind of the announcement of changes. For 

this  purpose,  we  introduce  a  Markov  chain  with  an  extended  state  space 

𝑆 = {0,
1

2
, 1}. The state 

1

2
 shall correspond to such an uncertain, transient 

period. The meaning of the states 0 and 1 is the same as in the standard two 

state model. An extended three state model is defined as follow 

 

𝑌𝑡|𝑋𝑡=𝑖~𝑁(𝜇𝑖, 𝜎𝑖), (5) 

 

for 𝑖 = 0,
1

2
, 1, where 𝜇0 < 𝜇1

2

< 𝜇1. Additionally, we assume that 𝑝(0,1) =

𝑝(1,0) = 0 to reflect smoothing of changes. As said, this model is denoted 

by MS(1, 3). 

In order to carry out a more precise classification, another model is 

taken into account. To distinguish definitely good periods, worse but still 

positive, definitely bad and moderately bad ones, we introduce the four-level 

                                                   
9 After Andrew Viterbi who was the author of the algorithm used to determine this path. 
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scale. The assessments are associated, respectively, with the states 1, 
2

3
, 0 and 

1

3
 of MC. Therefore, the MS model is introduced as follows 

 

𝑌𝑡|𝑋𝑡=𝑖~𝑁(𝜇𝑖, 𝜎𝑖), (6) 

 

for 𝑖 = 0,
1

3
,

2

3
, 1, where 𝜇0 < 𝜇1

3

< 𝜇2

3

< 𝜇1. As previously, we assume that 

only transitions between adjacent states are possible, so 

 

𝑝(0,1) = 𝑝(1,0) = 𝑝 (0,
2

3
) = 𝑝 (

2

3
, 0) = 𝑝 (

1

3
, 1) = 𝑝 (1,

1

3
) = 0. 

 

In the two-dimensional case, it is assumed that the hidden Markov chain 

reflects some common factor, which ‘governs’ the pairs of observable time 

series. In this case, the model MS(2,2), MS(2,3) and MS(2,4) are considered. 

For the model MS(2,k), we set the same state space 𝑆𝑋 of the hidden Markov 

chain as for the model MS(1,k), k =2,3,4. Obviously, we also have 

 

(𝑌𝑡
1, 𝑌𝑡

2)|𝑋𝑡=𝑖~𝑁 ([
µ𝑖

1

µ𝑖
2] , 𝛴𝑖), (7) 

for 𝑖 ∈ 𝑆𝑋. 

Usually, without any insight into estimates of µ𝑖
1 and µ𝑖

2, it is not 

possible to give a proper interpretation of the states of hidden Markov chains. 

Let’s consider for example MS(2,2). If each of the two observable component 

states 0 and 1 corresponds to the lower and higher levels, respectively, there 

is no basis for concluding that the hidden states of MS(2,2) correspond to 

(1,1) and (0,0). Furthermore, it turns out that even in the case of MS(2,4) the 

intuitive interpretation: (0,0), (1,1), (0,1) and (1,0) can be far from reality. 

To estimate parameters of hidden Markov models we use the 

Baum-Welch algorithm (Cappé et al., 2005). However, results of this 

deterministic algorithm depend on initial values of probabilities. They, 

therefore, may be far from optimal. In order to increase the chances of finding 

the optimal solution, the calculation can be repeated many times for the same 

set of data and different initial values. This is equivalent to performing 

a Monte Carlo simulation. For each of a k-state HMM model preselecting of 

the following values is required: 

 initial distribution of an unobserved Markov chain (k parameters), 

 transition probabilities of unobserved Markov chain parameters 

(𝑘2 parameters), 
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 means and covariances of the conditional distribution of an observed 

variable in the given state (2k parameters). 

In our research the initial values were randomly chosen using 

independent and identically distributed draws from the univariate 

distribution. The number of draws used for parameters estimation of the time 

series being under the study varied between 1.000 and 5.000. The number of 

trial’s repetitions depends on the number of the MS’s states and the numerical 

stability of computations. 

The best estimates of parameters of the models were chosen with 

selection criteria taking into account the following indicators (Bernardelli, 

2014; Bernardelli, Dędys, 2014): 

 Akaike's information criterion (AIC), 

 Bayesian information criterion (BIC), 

 the log likelihood value, 

 the frequency of obtaining a certain solution of the Baum-Welch 

algorithm (with an accuracy of one decimal place). 

The MS model, considered as the best for the particular input data set, 

was used to compute the most likely path, consists of the sequence of the 

states of MC (throughout the whole period under consideration). These paths 

are outputs of the Viterbi algorithm (Cappé et al., 2005). It is worth noting 

that, despite the deterministic nature of both used algorithms, the method of 

‘decoding’ the states of unobserved MC as a whole has a non-deterministic 

character. The stability of the results of the empirical analysis was verified 

with the procedure presented by Bernardelli (2015), and all the Viterbi paths 

were found to be stable. 

3. Results of empirical analysis 

This paper applies models and techniques described in the previous section to 

the results of the business tendency survey conducted monthly by the 

Research Institute for Economic Development, Warsaw School of Economics 

in the Polish manufacturing industry. In this survey respondents evaluate 

current and future (expected) changes in certain areas of economic activity. 

The survey basically consists of eight questions. For every question there are 

three possible reply options: increase, decrease or no change. For each 

question the balance is calculated as a difference between percentages of 

positive and negative answers. In the study we analyze the following 

balances: 

 volume of production (prod), 

 volumen of total orders (order), 

 finished good inventories (stock), 
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 selling prices of products (price), 

 level of employment (employ), 

 financial standing (fin). 

The data sample covers the period from May 2004 to February 2016. 

All the time series were seasonally adjusted using Seasonal package in R, i.e., 

the R-interface to X-13 ARIMA-SEATS, seasonal adjustment software 

developed by the United Census Bureau. 

3.1. Results of decomposition of univariate time series 

The parameters of MS(1,2), MS(1,3) and MS(1,4) were estimated for the six 

balances, and the Viterbi paths for all models were obtained. To give an 

example,  in  Figure 1  the  time  series  prod  and  its  decomposition  into 

two-, three- and four-states Viterbi path are shown, and the results of the 

decomposition of univariate time series of all balances are shown in Figure 2. 

 

 
Figure 1. Original time series of the prod balance vs the Viterbi paths of the 

corresponding two-, three- and four-states MS. 

 

We start with an analysis of the Viterbi paths obtained for MS(1,2). At 

first glance, one can see three very similar Viterbi paths for prod, order and 

fin. The two last ones are almost identical (see Figure 3). As a matter of fact, 

except for the first additional series of ‘zeros’, the Viterbi path for employ 

may be attached to that group. By analyzing Figure 4 one can see the 

analogous relationship in the observable time series. The Viterbi paths of 

price and stock differ from the rest of the paths and from each other. In 

addition, the Viterbi path obtained for stock has the greatest variability. 
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Figure 2. Results of the decomposition of univariate time series. 
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Figure 3. Original time series of the prod, fin and order balances. 

 

 
Figure 4. Original time series of the prod and employ balances. 

 

Obviously, as shown by Figure 5, this is a reflection of the actual 

relationship between the balances under consideration. It does not seem 

possible to clearly distinguish a leader time series, even in the group of prod, 

order and fin. 

The Viterbi paths with two states are a convenient way of pooling the 

balances, and they also give an opportunity to identify a leading time series, 

if such exists. The three-states Viterbi paths provide with even more valuable 

information. By comparing Figures 6 and 7 one can clearly note a difference 

in the pictures the two- and three-states Viterbi paths of fin show. However, 
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introducing the fourth state in MS does not informationally enrich the picture 

a lot (see Figure 8). A similar observation can be made for the Viterbi paths 

of employ and price MS(1,2) (see Figures 9-11). 

 

 
Figure 5. Original time series of the price and stock balances. 

 

 
Figure 6. Original time series of fin vs the corresponding two-states MS. 

 

There is no surprise that due to the higher level of decomposition, 

observation on the concordance of time series may change. For example, in 

absence of state 1 in the path of MS(1,3) for fin in the period April 2010 –  

August 2011 prod and order seem to be closer to the original time series. 

The three-states Viterbi paths give an opportunity to assess the rate of 

change of the states associated with the high and low levels. For example, by 
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analyzing the prod and order balances and the period February 2008 – July 

2010, one can infer that the descent from state 1 to state 0, due to longer series 

of state ½, is slightly gentler for prod. On the contrary, transition from state 

0 to 1 seems to be a little bit sharp (see Figure 12).  Furthermore, there are 

periods in which the Viterbi paths seem to indicate the same range of changes 

(up to November 2013; see Figures 13 and 14). 

 

 
Figure 7. Original time series of fin vs the corresponding three-states MS. 

 

 
Figure 8. Original time series of fin vs the corresponding four-states MS. 
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MS(1,2), the four-states paths provide crucial information as well. For 

example, comparing the paths for MS(1,3) and MS(1,2) for employ in the 

period up to January 2006 may be in a way a little bit misleading. A deeper 

insight into the path for MS(1, 4) gives a clear explanation. 

 
Figure 9. Original time series of employ vs the corresponding 

two-states MS. 

 

 
Figure 10. Original time series of employ vs the corresponding 

three-states MS. 
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Figure 11. Original time series of employ vs the corresponding 

four-states MS. 

 

 
Figure 12. Part of the prod and order Viterbi paths. 

 

3.2. Results of decomposition of bivariate time series 

In this section, an example of the use of the Viterbi paths for models M(2,k) 

is given. We focus on the following pairs of the balances: (prod, employ), 

(stock, order) and (order, price). It turns out that not all of models M(2,k) fit 

the data. Specifically, this problem refers to M(2,2) for the pair (order, price), 

and M(2,4) for the pairs: (order, price) and (stock, order). 
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Figure 13. Part of the prod and order Viterbi paths. 

 
Figure 144. Part of the prod and order Viterbi paths. 

 

In the two-dimensional case it is assumed that the hidden Markov chain 

reflects some common factor, which ‘governs’ the pairs of the observable 

time series. On the contrary to the one-dimensional case, interpretation of 

states is not obvious and should be inferred after thorough examination of 

Gaussian distribution mean estimates. For clarity, we decide to omit exact 

values and use the following symbols: ++ to denote the high level, + moderate 

high level, - moderate low level, -- low level, and 0 meant to be a value very 

close to zero. Interpretation of states of the hidden Markov chain for all 

models under the study is given in Table 1 (with X reserved for models that 

do not fit to data). The Viterbi paths obtained for the pair (prod, employ) are 
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shown in Figure 15, for (price, order) in Figure 16, and for (order, stock) in 

Figure 17. 

 

Table 1. Summary of the averages of normal distribution for the states of 

hidden Markov chain. 

state (prod, employ) (order, price) (stock, order) 

0 (-,-) X (+,--) 

1 (+,+) X (0,-) 

0 (--,--) (--,-) (+,--) 

1/2 (+,-) (-,-) (+,-) 

1 (0,+) (0,+) (-,+) 

0 (--,--) X X 

1/3 (+,-) X X 

2/3 (+,0) X X 

1 (++,+) X X 

 

 

 
Figure 15. The prod and employ Viterbi paths. 

 

The question arises: what could Viterbi paths of bivariate time series be 

applied to? For example, comparing the Viterbi paths for (prod, employ) and 

(order, price) makes one assume that the changes which happen within a firm 
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period of the Great Recession) to the corresponding changes outside that firm. 

Illustration is given by Figure 16. Furthermore, the Viterbi paths shown in 
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related to leading economic variables and the balances connected with 

coincident ones. 

 

 
 

Figure 16. The prod and employ Viterbi paths vs the order and price ones. 

 

 
Figure 17. The stock and order Viterbi paths vs the prod and employ ones. 
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of manufacturing production, orders, finished goods inventories, selling 

prices of products, employment and financial standing of manufacturers. On 

the whole, the Viterbi paths with two states provide a convenient way to pool 

time series, and to identify leading ones. We did not, however, find any 

leading time series in the dataset, even in the group of the balances of 

production, orders and financial standing, i.e., the time series with very 

similar Viterbi paths. The three- and four-states Viterbi paths allow assessing 

the change rate of the states related to high and low levels of economic 

phenomena under a study. Ones of the many advantages of the Viterbi paths 

obtained for the one-dimensional case are intuitive interpretation of results 

and a wide range of types of analyses that can be carried out. The Viterbi 

paths obtained for the two-dimensional case seem to be a promising tool too. 

However, they have some disadvantages. It turned out that the proposed 

models did not always fit to business tendency survey data. Moreover, 

interpretation of the hidden states might be found unclear a bit. 
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