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Mortality modelling and forecasting 
using generalised age-period-cohort 
models and neural networks

Abstract

Modelling and forecasting mortality risk are key tasks in demography as well as for social 
security institutions and insurance companies. Traditionally used stochastic mortality models 
such as the Lee-Carter model, require meeting assumptions which cannot always be met 
in real-life scenarios. These include, for example, the condition of time independence of age-
specific improvement rates. An alternative approach to mortality modelling is based on deep 
neural networks. Previous works in the field primarily focus on recurrent neural networks, 
typically used in time series forecasting problems. This work aims to compare and analyse 
the effectiveness of both types of methods in mortality modelling and forecasting based 
on nine European populations. The study uses data from the Human Mortality Database. 
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Additionally, we propose a hyperparameter tuning framework for the feedforward neural 
network model used in the study.

Keywords: Human Mortality Database, mortality forecasting, neural networks, stochastic 
mortality models

Introduction

In recent years, the magnitude of shocks affecting mortality rates – both in Europe 
and globally – has been unprecedented. A shock like this was the COVID-19 
pandemic, which caused mortality rates across various nations, cohorts and socio-
economic groups to change. That affected not only multiple individuals but also social 
security institutions and insurance companies that traditionally use mortality models 
in their daily operations. Mortality modelling and forecasting became even more 
important. Accurate mortality modelling is fundamental for the financial stability 
of social security systems – over- or underestimation of mortality risk might lead 
to inadequate payouts of social benefits and affect public budgets and fiscal stability 
of countries. Inadequate estimation of mortality rates (and life expectancy) might 
lead to incentive distortions and miscalculations of financial sustainability (Ayuso 
et al., 2021). On average, across 31 OECD countries, public pension expenditure 
is expected to increase from 8.9% of GDP in 2020–2023 to 10.2% of GDP in 2050 
(OECD, 2023). Thus, long-term mortality projections are crucial for responsible 
pension policy planning, as there is usually a lag between reform occurrence and its 
impact on social expenditures.

From the perspective of insurance and reinsurance companies, inaccurate 
mortality models, especially those related to long-term products (Gaille and Sherris, 
2011), may have a direct impact on solvency, profitability and competitiveness. 
Underestimation of mortality risk could lead to  insufficient technical provisions, 
which may lead to insolvency. On the other hand, overestimation of mortality risk may 
lead to inadequate product pricing, which can decrease the entity competitiveness.

A basic stochastic mortality model, utilising singular value decomposition 
(SVD) for decomposing the matrix of mortality rates with dimensions reflecting 
age and time, was introduced by Lee and Carter (1992). Since then, many extensions 
and alternatives of this model have been developed. There are stochastic mortality 
modelling methods related to single population models as well as multiple population 
models, both in discrete and continuous time.
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As for the single population models, the most recognisable include works 
introducing a more formalised approach based on Poisson regression (Brouhns et al., 
2002), incorporating the cohort effects into the model (Renshaw and Haberman, 2006) 
or assuming linearity of the one-year death probabilities logit for older ages within 
the two-factor Cairns-Blake-Dowd (CBD) model (Cairns et al., 2006). Furthermore, 
the characteristics of the classical Lee-Carter (LC) model and the CBD model were 
joined in the Plat model (Plat, 2009), allowing for capturing the cohort effect as well 
as estimation tailored to broader age ranges as compared to the CBD model. The 
developments by Hunt and Blake (2015) and Currie (2016) help to generalise the 
abovementioned models within an age-period-cohort structure and define such 
models as generalised linear models or non-linear models. The generalised age-
period-cohort (GAPC) framework was also described by Villegas, Millossovich and 
Kaishev (2018).

As for the multiple population models, the basic Lee-Carter model was extended 
to a joint model of the mortality coefficients of multiple countries with a common 
mortality index (Li and Lee, 2005). Further extensions and modifications include 
the Bayesian (Antonio et al., 2015) or factor-based approach (Chen et al., 2015) as 
well as models taking into account a long-term convergence of the mortality rates of 
multiple populations (Li et al., 2017) or two-population discrete models with jumps 
(Zhou et al., 2013 and Özen and Şahin, 2021).

Advances in machine learning and deep learning have resulted in mortality 
models based on alternative approaches to stochastic mortality models. One of the 
initial works in the field explores the possibility of determining the causes of death 
in mortality modelling (Deprez et al., 2017) with the use of tree-based algorithms, 
which were then further extended by Levantesi and Pizzorusso (2018). A stacked 
regression ensemble approach is proposed by Kessy et al. (2022). As for the neural 
network-based approach, one of the first works in  the field by Hainaut (2018) 
describes a two-step semiparametric model for estimation of log forces of mortality. 
The deep learning approach to mortality modelling was further explored by Nigri 
et al. (2019), who applied the long-short-term memory (LSTM) network to fit the 
time index trend being part of the traditional LC model. This approach turned out 
to outperform the classical model in forecasting capabilities. Richman and Wüthrich 
(2021) apply a neural network with embedding layers within a multi-population LC 
framework, which helps to incorporate categorical features into the model.

The most recent developments in the field include the applications of recurrent 
neural network (RNN) and convolutional neural network based model architectures 
to mortality forecasting, for example by Perla et al. (2021) and Wang et al. (2021) 
who combine neighbouring mortality framework with the CNN model to achieve 
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better forecasting performance. Other recent developments include a locally coherent 
multi-population model by Perla and Scognamiglio (2022), applying neural networks 
to point and interval forecasts of mortality rates (Schnürch, Korn, 2022) or neural 
network-based calibrations of (Poisson) LC multi-population models (Scognamiglio, 
2022). An alternative approach, based on transformer architecture which uses 
multi-head attention mechanism and positional encoding for key mortality related 
features extraction, was recently introduced by Wang et al. (2024), whereas multi-
population mortality models handling long-term forecast divergence of mortality 
rates resulting from modelling multiple populations was simultaneously presented 
by Scognamiglio (2024).

The GAPC mortality models have a clear parametric structure which ensures 
better interpretability (i.e. specific model parameters related to age, period and 
cohort effects on mortality). Additionally, such models have well-defined statistical 
properties. They can be fitted using the maximum likelihood estimation method, 
which ensures consistency, equivariance and efficiency of the model parameter 
estimates (Fisher, 1922). GAPC models also allow for straightforward quantification 
of prediction uncertainty (e.g. using confidence intervals). Such models also utilise 
identifiability constraints to ensure unique parameter estimates and prevent overfitting. 
The estimation process itself is efficient and thus practically applicable in real-
world scenarios (e.g. official mortality projections by social security institutions or 
estimations of longevity risk for Solvency II requirements). On the other hand, the 
majority of GAPC models assume (log) linear nature of mortality trends, which may 
not capture more complex dependencies between age, period and cohort effect, e.g. 
for smaller populations with non-trivial mortality patterns. They also usually treat 
each population independently, which does not allow for capturing common trends 
in mortality patterns across the analysed populations.

The main advantages of the neural network-based approach to mortality modelling 
are, in particular, the ability to identify complex dependencies between age, period 
and cohort effects as well as the possibility to capture common trends between 
different populations, notwithstanding their characteristics. On the other hand, 
such models usually lack interpretability and explainability (although there are first 
developments in that field, e.g. as in the work of Perla, Richman, Scognamiglio and 
Wüthrich (2024)). As for the estimation process, it is usually more complex and time-
consuming as compared to GAPC models, especially if training involves extensive 
hyperparameter tuning.

The main aim of this paper is to compare the predictive effectiveness of various 
single mortality models from the GAPC framework against a feedforward neural 
network architecture based on a multiple population approach similar to the one 
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proposed by Richman and Wüthrich (2021). Additionally, in order to improve the 
performance of the neural network, we conduct hyperparameter tuning focusing on 
a broader set of hyperparameters as compared to the original paper.

This study examines the following research questions:
1.	 How does the predictive effectiveness of mortality models from the GAPC 

framework compare to a  feedforward neural network architecture based on 
a multiple population approach, when applied to selected European populations?

2.	 Does hyperparameter tuning focusing on a broader set of parameters combined 
with ensembling techniques improve the predictive performance of the feedforward 
neural network model for mortality modelling?
The analysis was conducted based on the data from selected European countries 

available in the Human Mortality Database (HMD).1

Data

In our analysis, we consider mortality data for nine countries (Germany, Spain, 
France, Hungary, Italy, Lithuania, Latvia, Poland and Portugal) from HMD to account 
for the heterogeneity of mortality patterns among various populations for periods 

{ , , }T 1960 2018…=  with mortality rates for ages { , , , }A 0 1 99…= , split by gender. 
We then split the data into two sets of calendar years, { , , }T 1960 2007…train =  and 

{ , , }T 2008 2018…test =  to train and test the model performance respectively.
Additional data transformations we applied are related to unifying the datasets 

for East and West Germany (DEUTE and DEUTW respectively) as the combined 
DEUTNP dataset contained only the data from 1990 onwards. The calculation 
of age specific mortality rates for females and males from Germany was done by 
aggregating exposures and total number of deaths per group (male, female), age and 
year and calculating mortality rates based on such aggregated measures (for East 
and West Germany combined). In order to keep the stability of the neural network 
the maximum mortality rate is set to 1, whereas the minimum mortality rate was 
set to 0.000001 in cases where the number of deaths was equal to 0 to prevent errors 
in the logarithmic transformation of the mortality rates. For fitting models following 
the GAPC framework we utilise the StMoMo R package (Villegas, Millossovich and 
Kaishev, 2018), whereas for the feedforward neural network model we utilise the 
TensorFlow library (Abadi et al., 2016) through Keras API for R (Chollet, 2015).

1	 Human Mortality Database, https://mortality.org/
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General notation for GAPC mortality models

Let us denote calendar year as t, random variable defining number of deaths 
of a given age x at time t as ,D x t^ h and the observed number of deaths as ,d x t^ h 
where the related central number of people of a given age exposed to risk is denoted 
as , .E x tc^ h  Then, we can arrange these data into matrices respectively ,d x tD^ ^ hh

and ,E x tE cc= ^ h having dimensions n na y#  (with na  ages and ny  years and nb =  
n n 1a y= + - cohorts. Then the force of mortality matrix can be defined as m = 

,
,

.E x t
d x t

c= d
^

^

h

h
n

As per generalisation by Villegas, Millossovich and Kaishev (2018), we can then 
define the GAPC framework for single population mortality modelling as follows:

	 , ( )ln m x t a x f x t ci i

i

N

1
l c= + +

=

^ ^ ^ ^h h h h| 	 (1)

where ,m x t^ h is the force of mortality for a given age [ , ]x x xn1 a
!  as of time period 

[ , ]t t tn1 y
!  and for cohort { , , ]c t x t x…n n1 1a y

! - - , a x^ h is the age effect of the 
mortality pattern averaged out across the time periods, N  is the number of age – period 
terms describing the temporal effect til ^ h, f xi ^ h is the age modulating function, 
whereas ( )cc  is a factor reflecting cohort effect (where c t x= - ). Formula (1) denotes 
the systematic component of the model. Additionally the model contains a random 
component ,D x t^ h having a Poisson distribution (Brouhns et al., 2002), i.e.

	 , ~ , , .D x t Poiss E x t m x tc
)^ ^ ^ ^h h hh 	 (2)

The relation between systematic and random components is given by a  link 
function g:

	 ,
,

,lng E x t
D x t

m x tE c =d d
^

^
^

h

h
nn h	 (3)

which in case of the Poisson distribution is usually the log link function. Alternatively 
one could select a binomial distribution with logit link function.

The majority of stochastic mortality models are restricted with parameter constraints 
related to the abovementioned age, period and cohort effects (i.e. are identifiable 
to a certain transformation ensuring unique parameter estimates). These are applied 
using a constraint function mapping the initial vector of parameters into a vector of 
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transformed parameters where the latter one satisfies the model constraints without 
effect on the log force of mortality ,ln m x t ^ h. The most popular single population 
mortality models based on the GAPC framework are listed below, together with 
associated model constraints. Lee Carter model (1992) is the simplest one and is 
defined as follows:

	 , ,ln m x t a x x t1 1b l= +^ ^ ^ ^^ ^h h h hh h 	 (4)

with the following parameter constraints: , .t x0 1
xt

1 1l b= =^ ^^ ^h hh h||  It is worth 

noting that this model is lacking the cohort effect, thus it cannot capture the non-
linear tendencies in mortality rates well.

Such a component is incorporated in the Renshaw and Haberman (2006) (RH) 
model:

	 , ,ln m x t a x x t x c1 1 0b l b c= + +^ ^ ^ ^ ^ ^^ ^ ^h h h h h hh h h 	 (5)

with following parameter constraints:

, .t c x x0 1  
x xxt

1 1 1 0l c b b= = = =^ ^ ^ ^^ ^ ^ ^h h h hh h h h| |||

Setting 0b^ h to 1 simplifies the abovementioned structure to modified Renshaw 
Haberman (mRH) model (2011), which is more stable than the original one, thus it 
would be considered in the analysis part.

If the parameters 0b^ h and 1b^ hof RH model are set to 1, then we obtain the so 
called age-period-cohort (APC) model (Cairns et al., 2009):

	 , ,ln m x t a x t c1l c= + +^ ^ ^ ^^h h h hh 	 (6)

with the following constraints .t c c c 0
xxt

1 1 1l c c= = =^ ^ ^^ ^ ^h h hh h h|||

The model tends to be more efficient in the case of dataset structure alterations.
The next model by Cairns Blake and Dowd (2006) assumes that age is linearly 

interacting with log mortality and there is no cohort effect:

	 , )ln m x t t x x x t 1 2l l= + - -- -
^ ^ ^ ^^ ^h h h hh h .	 (7)

Two extensions of the CBD model allow for more robust mortality patterns 
modelling. Cairns et al. (2009) introduce a more complex M7 model which allows 
for capturing additional age-related dynamics by introducing a quadratic component:
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	 ,ln m x t t x x t1 2l l= + - -^ ^ ^ ^^ ^h h h hh h ,x x t cx
2 2 3v l c+ - - +- t_^ ^ ^^h i h hh 	 (8)

given the following constraints:

,

,

t t t c c c

x

0

1  

t t
xxt

x

1 2 3 1 2 1

1

l l l c c

b

= = = = =

=

^

^

^ ^ ^ ^^

^

^ ^ ^ ^h

h

h h h hh

h

h h h h| | |||
|

where ^
x
2
v  is the average value of .x x 2

- -^ h

Another extension of the CBD model is proposed by Plat (2009) with additional 
parameters related to age and period effects:

	 ,ln m x t a x t x x t1 2l l= + + - -^ ^ ^ ^ ^^ ^h h h h hh h ,x x t c3l c+ - +- +^^ ^ ^^h h h hh 	 (9)

with analogical constraints as the M7 model.
All of the abovementioned models can be fitted with the maximum likelihood 

function as specified by Villegas, Millossovich and Kaishev (2018):

, , , , , ,lnd x t d x t x t d x t d x tL
tx
~=t t_ ^ ^ ^ _ ^ ^h hi h h h|| ( , ) , !)lnd x t d x t- -t ^ h 	 (10)

where the weights ( , )x t~  equal to 1 if a given data point ( , )x t  is included in the model 
and 0 otherwise. Given the Poisson distribution of number of deaths, the expected 
number of deaths is given by the following formula:

	 ( , ) , .d x t E x t ec a x f x t ci i

i

N

1= l c+ +
=

t ^ d ^ ^ ^ ^h h h h hn| 	 (12)

Multiple population modelling using neural networks

While designing the neural network model for mortality modelling purposes, we 
follow a setup defined by Richman and Wüthrich (2021). The model is fit to mortality 
rates for the calendar years 1960–2007, and then the prediction of mortality rates is 
performed on the years 2008–2018. The feature space consists of age, calendar year, 
region and gender, where the calendar year (or year of death) is treated as numerical 
input to the neural network to allow for forecasting future mortality rates beyond the 
calendar years on which the model was fitted. 10% of the data from the training set is 
used as a validation set (obtained through stratified sampling with regard to age and 
calendar year) in order to select the best combination of hyperparameters minimising 
the mean squared error (MSE). We treat region, gender and age as categorical features 
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transformed through embedding layers (Bengio et al., 2003), which transform values 
of categorical features into a lower-dimensional vector whose parameters are learned 
during model training. We can define the embedding layer ıt  for , ,… n1t t t= " , 
being number of unique categories of cardinality n. Then such a layer transforms 

j !t t into a qt  – dimensional vector as defined below:

	 ,…, ., ,j j q j1f t f t f t= t tt t

l^ _ ^ ^h h hi 	 (13)

For the purposes of multiple population modelling based on neural networks, 
we can define a single feature vector being a concatenation of previously defined 
embedding vectors as

	 , , , , , , ,t x i j t x i jf a r s= l l l l^ _ ^ ^ ^h h h h i 	 (14)

which serves as an input layer for the neural network model used for predicting (log) 
mortality as of calendar year t  for age x , region i  and gender j . Then we can define 
the structure of the neural network as comprising of intermediate layers ,…,Z Z h1^ ^h h 
with hi  neurons and the final output layer yt (being prediction of log mortality rates) 
as follows:

	 , , , , , , ,     t x i j t x i jZ F f f1
0 0

0 0/ { ~ ~= +^ ^ _ ^^ ^hh hi
h h 	 (15)

	 ,Z F Z Zh h
h

h h h1
1 0

1 1 1/ { ~ ~= +-
-

- - -^ _
^ ^ ^ ^ ^h i
h h h h h  , ,h H2 1 …  = - 	 (16)

	 ,y F Z ZH
H

H H H1
0

1/ { ~ ~= +- -t ^ _
^ ^ ^ ^h i

h h h h 	 (17)

where j
0~
^ h is a  hi -element intercept vector, j~^ h is a ( )j j 1#i i - -dimensional weight 

matrix and h 1{ -  is the activation function which calculates the impact of each neuron 
(these may vary between the layers).

Following the approach from Richman and Wüthrich (2021), we set the dimension 
of all embedding layers within the input feature vector to 5. The number of intermediate 
layers in the network is subject to hyperparameter tuning. For each of the intermediate 
layers, we also add dropout layers for regularisation purposes (Hinton et al., 2012), 
(where dropout probability for each neuron is subject to hyperparameter tuning) 
as well as batch normalisation layers (Ioffe, Szegedy, 2015) which speed up and 
stabilise the training process through recentring and rescaling of inputs to network 
layers. Similarly to Richman and Wüthrich (2021), we use the back-propagation 
algorithm to fit the model. The activation function for intermediate layers is set 
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to Rectified Linear Unit (ReLU) (Nair, Hinton, 2010), whereas the last layer has the 
sigmoid activation function. Additionally, following the original work by Richman 
and Wüthrich (2021), we introduce skip connections between the feature layer and 
the last hidden layer as well as the feature layer and the first hidden layer to diminish 
the risk of the vanishing gradient problem.

As for the key hyperparameters utilised in the training process, we focus on both 
the ones related to the general network architecture as well as the ones responsible 
for training process optimization. The hyperparameters related to first area are the 
number of layers, number of neurons in each layer and batch size. As for the training 
process, we utilise dropout probability, learning rate and patience related to early 
stopping or learning rate reduction (i.e. a hyperparameter indicating the number of 
epochs with no improvement in MSE value on the validation set after which training 
will be stopped or learning rate will be reduced in a given iteration). We select a 5% 
subsample of all combinations within the hyperparameter space to speed up the 
training process.

To increase the robustness of the model, we average out the predictions of the 4 
best models obtained during the hyperparameter tuning process. Such an approach 
can help obtain more stable results on the test set and ensure better generalisation 
on the data not used during the training process.

Results

Exemplary mortality patterns for the ages and countries mentioned, compared 
as of the earliest (1960) year and latest (2018) year in the dataset, are presented in 
Figure 1.

Looking at the high-level visualisations, it is easy to infer that mortality rates were 
lower in 2018 compared to 1960, they are generally lower for females than for males, 
and each country has a specific mortality pattern. Even though mortality decreased 
in European countries as compared to past century, one can still observe noticeable 
differences in the levels of mortality between Eastern and Western European countries, 
resulting not only from differences in healthcare or social security systems but also 
on supra-national developments between these two clusters of countries (Carracedo 
et al., 2018). As for the year 2018, interestingly, in some Baltic states (i.e. Lithuania 
and Latvia) as well as in Hungary, significantly lower mortality rates can be observed 
than in other countries analysed in specific younger age groups, indicating very low 
or even zero mortality rates for these. Common methods for overcoming such issues 
include introducing age-standardised rates (ASR) or smoothing techniques like those 
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indicated by Perez-Panades et al. (2020). Those cases are more frequent for lower age 
groups in the latest years, which can be observed respectively for females and males 
in Figure 2 and Figure 3 (mortality patterns for the latest years are marked green).

Figure 1. � Actual mortality rates (log scale) by gender for ages 0–99 from selected 
countries – comparison for years 1960 and 2018.

Source: Authors’ own compilation based on per gender HMD mortality tables for ages 0–99 from selected coun-
tries for years 1960–2018.
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Figure 2. � Mortality rates (log scale) for females for ages 0–99 from selected 
countries for years 1960–2018

Source: Authors’ own compilation based on per gender HMD mortality tables for ages 0–99 from selected coun-
tries for years 1960–2018.
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Figure 3. � Mortality rates (log scale) for males for ages 0–99 from selected countries 
for years 1960–2018

Source: Authors’ own compilation based on per gender HMD mortality tables for ages 0–99 from selected coun-
tries for years 1960–2018.

The baseline neural network-based model hyperparameters and results on 
the training set are presented in Table 1. The four best models obtained in the 
hyperparameter tuning process are shown in Table 2. The hyperparameter tuning 
process results in a decrease in MSE values. The ensemble of the 4 best models will 
be used for prediction on the test set.
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Table 1. � Results of the baseline neural network model with key hyperparameter 
values on the training set (years 1960–2007)
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Source: Authors’ own compilation based on per gender HMD mortality tables for ages 0–99 from selected coun-
tries for years 1960–2007.

Table 2. � Results of the 4 best neural network models with key hyperparameter values 
on the training set (years 1960–2007)
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Source: Authors’ own compilation based on per gender HMD mortality tables for ages 0–99 from selected coun-
tries for years 1960–2007.

The results of GAPC and neural network-based ensemble models are illustrated 
graphically for the exemplary year (2014) against the observed mortality rates for 
females and males in Figures 4 and 5, respectively.



Mortality modelling and forecasting using generalised age-period-cohort models and neural networks

21

Figure 4. � Comparison of predictions for ages 0–99 against observed mortality rates 
(log scale) per country for females as of the year 2014 from the test set

Source: Authors’ own compilation based on per gender HMD mortality tables for ages 0–99 from selected coun-
tries for years 1960–2018.
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Figure 5. � Comparison of predictions for ages 0–99 against observed mortality rates 
(log scale) per country for males as of the year 2014 from the test set

Source: Autor’s own compilation based on per gender HMD mortality tables for ages 0–99 from selected countries 
for years 1960–2018.

Mean squared errors for each model per country and gender group on the test 
set are presented in Tables 3 and 4.

Table 3.  Total MSE of mortality rates for the test set (years 2008–2018)

NN base NNtuned LC CBD mRH PLAT APC M7

0.000261 0.000175 0.000221 0.000331 0.000405 0.000501 0.000621 0.004260

Source: Authors’ own compilation based on per gender HMD mortality tables for ages 0–99 from selected coun-
tries for years 1960–2018.
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The analysis of the results by country and gender groups indicates that in the 
majority of cases, the neural network models perform better than the other models 
(11 country gender groups out of 18). The traditional Poisson-based Lee-Carter 
model is the second most frequent model with minimal MSE (6 cases out of 18). As 
for the other GAPC-based models, the CBD model has performed the best in a single 
country gender group (Males from Italy). The tuned neural network-based model 
has also outperformed the base neural network model in 8 out of 11 country gender 
groups, as well as regarding total MSE on the test set.

Discussion and conclusions

This article aims to compare the effectiveness of traditional models and neural 
networks in mortality modelling and forecasting. Traditionally used stochastic 
mortality models have certain limitations, the main one being difficulties in fitting 
these models to the data (Richman and Wüthrich, 2021). The development of artificial 
intelligence methods has made machine learning models an effective tool in mortality 
modelling as well (Deprez et al., 2017; Hainaut, 2018; Levantesi and Pizzorusso, 2018; 
Kessy et al., 2022).

The results presented in  this paper, based on the data from nine European 
countries, show that neural network-based models might have better performance 
than the traditional GAPC models.

Referring to the first research question, our results show that the neural network-
based models achieve better results in the majority of analysed country gender groups 
(11 out of 18). The Poisson-based Lee-Carter model is the second-best-performing 
model (6 cases out of 18).

GAPC models assume (log) linear nature of mortality trends, which may not 
capture more complex dependencies between age, period and cohort effect, e.g. 
for smaller populations with non-trivial mortality patterns. They also usually treat 
each population independently, which does not allow for capturing common trends 
in mortality patterns across the analysed populations. On the other hand, such complex 
dependencies between age, period and cohort effects as well as the possibility to capture 
common trends between different populations, notwithstanding their characteristics, 
is possible using the neural network approach. The architecture of such a model is 
elastic and can be tailored to analysed populations during the hyperparameter tuning 
process. However, it is worth emphasising that the graphs of logarithms of mortality 
rates by gender that we obtained, showing that the decline in mortality became clearly 
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observable after 1990, are consistent with the probability of dying between the ages 
of 15 and 60 based on the same database, i.e. HMD (World Bank Group, 2024).

We can also conclude that the neural network based models achieve better 
results for countries that might be perceived as emerging or developing markets 
(e.g. Baltic states, Hungary) whereas the Lee-Carter model performs better mostly 
for the countries perceived as developed economies (in particular Germany, France 
and Italy), e.g. as per classification by Morgan Stanley Capital International (MSCI) 
(MSCI, 2024).2 As for the total mean squared errors measured on the test set (i.e. 
not differentiating between country gender groups), the neural network and Lee 
Carter models are also the best performing models. As per analysis by Shen et al. 
(2024), some of the abovementioned countries fall into the same clusters based on 
mortality pattern similarities.

As for the second research question, we have found that extended hyperparameter 
tuning and ensembling of the best neural network architectures result in better 
predictions on the test set than the baseline model without applying these techniques. 
It is also worth noting that the baseline neural network model still performed better 
as compared to models based on the GAPC framework for selected countries with 
smaller populations (e.g. Hungary, Lithuania or Latvia).

The model always would need to be selected on a case–by–case basis, and, in 
the case of more complex ones (neural network-based), a thorough hyperparameter 
selection could contribute to the robustness of the model and increased prediction 
stability.

Another area worth investigating while analysing GAPC and neural network-based 
mortality models is the impact of mortality shocks (e.g. COVID-19 pandemic) on the 
model behaviour. As for GAPC models, pandemic shocks could negatively affect all of 
the mortality pattern-related effects, i.e. the temporal effect (shift in gradual decrease 
in mortality over time), age group effect (especially for the advanced age groups), as 
well as the cohort effect. Simple extrapolation of mortality patterns observed for given 
age intervals using the traditional ARIMA approach would not necessarily reflect 
the impact of pandemic shocks on future mortality trends accurately (Ashofteh, 
Bravo, 2021). Even though such models explicitly incorporate the age effect, the 
future trends may be misestimated if pandemic shock disproportionately affects 
specific age groups. Such unusual mortality pattern shifts could also increase the 
forecast uncertainty (i.e. result in wider confidence intervals of the post-pandemic 
forecast). The neural network-based models, on the other hand, are expected to be 

2	 Morgan Stanley Capital International, https://www.msci.com/our-solutions/indexes/developed-
markets, https://www.msci.com/our-solutions/indexes/emerging-markets.
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more flexible in handling mortality shocks but could also overfit to the training data 
without proper hyperparameter tuning.

As for future developments taking into account mortality shocks, one might 
consider comparative analysis with the use of combined neural networks of various 
types (recurrent, convolutional, transformer-architecture based, generative adversarial 
networks, etc.) as well as model ensembling techniques between traditional and 
neural network based architectures. Ensembling allows for increased forecasting 
accuracy by integrating several predictions from underlying models, making the 
model more robust and less prone to overfitting (Breiman, 1996). One could also 
consider the incorporation of the Bayesian approach to account for uncertainties 
related to mortality shocks and external factors related to irregularities in mortality 
patterns, such as emigration and immigration (Wiśniowski et al., 2015). Such an 
approach could increase the model robustness and allow for a better generalisation 
about future trends, also accounting for post pandemic factors affecting mortality 
patterns in various populations.
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