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models and neural networks

Abstract

Modelling and forecasting mortality risk are key tasks in demography as well as for social
security institutions and insurance companies. Traditionally used stochastic mortality models
such as the Lee-Carter model, require meeting assumptions which cannot always be met
in real-life scenarios. These include, for example, the condition of time independence of age-
specific improvement rates. An alternative approach to mortality modelling is based on deep
neural networks. Previous works in the field primarily focus on recurrent neural networks,
typically used in time series forecasting problems. This work aims to compare and analyse
the effectiveness of both types of methods in mortality modelling and forecasting based
on nine European populations. The study uses data from the Human Mortality Database.



tukasz Gtab, Wioletta Grzenda

Additionally, we propose a hyperparameter tuning framework for the feedforward neural
network model used in the study.

Keywords: Human Mortality Database, mortality forecasting, neural networks, stochastic
mortality models

Introduction

In recent years, the magnitude of shocks affecting mortality rates — both in Europe
and globally - has been unprecedented. A shock like this was the COVID-19
pandemic, which caused mortality rates across various nations, cohorts and socio-
economic groups to change. That affected not only multiple individuals but also social
security institutions and insurance companies that traditionally use mortality models
in their daily operations. Mortality modelling and forecasting became even more
important. Accurate mortality modelling is fundamental for the financial stability
of social security systems — over- or underestimation of mortality risk might lead
to inadequate payouts of social benefits and affect public budgets and fiscal stability
of countries. Inadequate estimation of mortality rates (and life expectancy) might
lead to incentive distortions and miscalculations of financial sustainability (Ayuso
et al., 2021). On average, across 31 OECD countries, public pension expenditure
is expected to increase from 8.9% of GDP in 2020-2023 to 10.2% of GDP in 2050
(OECD, 2023). Thus, long-term mortality projections are crucial for responsible
pension policy planning, as there is usually a lag between reform occurrence and its
impact on social expenditures.

From the perspective of insurance and reinsurance companies, inaccurate
mortality models, especially those related to long-term products (Gaille and Sherris,
2011), may have a direct impact on solvency, profitability and competitiveness.
Underestimation of mortality risk could lead to insufficient technical provisions,
which may lead to insolvency. On the other hand, overestimation of mortality risk may
lead to inadequate product pricing, which can decrease the entity competitiveness.

A basic stochastic mortality model, utilising singular value decomposition
(SVD) for decomposing the matrix of mortality rates with dimensions reflecting
age and time, was introduced by Lee and Carter (1992). Since then, many extensions
and alternatives of this model have been developed. There are stochastic mortality
modelling methods related to single population models as well as multiple population
models, both in discrete and continuous time.
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As for the single population models, the most recognisable include works
introducing a more formalised approach based on Poisson regression (Brouhns et al.,
2002), incorporating the cohort effects into the model (Renshaw and Haberman, 2006)
or assuming linearity of the one-year death probabilities logit for older ages within
the two-factor Cairns-Blake-Dowd (CBD) model (Cairns et al., 2006). Furthermore,
the characteristics of the classical Lee-Carter (LC) model and the CBD model were
joined in the Plat model (Plat, 2009), allowing for capturing the cohort effect as well
as estimation tailored to broader age ranges as compared to the CBD model. The
developments by Hunt and Blake (2015) and Currie (2016) help to generalise the
abovementioned models within an age-period-cohort structure and define such
models as generalised linear models or non-linear models. The generalised age-
period-cohort (GAPC) framework was also described by Villegas, Millossovich and
Kaishev (2018).

As for the multiple population models, the basic Lee-Carter model was extended
to a joint model of the mortality coefficients of multiple countries with a common
mortality index (Li and Lee, 2005). Further extensions and modifications include
the Bayesian (Antonio et al., 2015) or factor-based approach (Chen et al., 2015) as
well as models taking into account a long-term convergence of the mortality rates of
multiple populations (Li et al., 2017) or two-population discrete models with jumps
(Zhou et al., 2013 and Ozen and Sahin, 2021).

Advances in machine learning and deep learning have resulted in mortality
models based on alternative approaches to stochastic mortality models. One of the
initial works in the field explores the possibility of determining the causes of death
in mortality modelling (Deprez et al., 2017) with the use of tree-based algorithms,
which were then further extended by Levantesi and Pizzorusso (2018). A stacked
regression ensemble approach is proposed by Kessy et al. (2022). As for the neural
network-based approach, one of the first works in the field by Hainaut (2018)
describes a two-step semiparametric model for estimation of log forces of mortality.
The deep learning approach to mortality modelling was further explored by Nigri
et al. (2019), who applied the long-short-term memory (LSTM) network to fit the
time index trend being part of the traditional LC model. This approach turned out
to outperform the classical model in forecasting capabilities. Richman and Wiithrich
(2021) apply a neural network with embedding layers within a multi-population LC
framework, which helps to incorporate categorical features into the model.

The most recent developments in the field include the applications of recurrent
neural network (RNN) and convolutional neural network based model architectures
to mortality forecasting, for example by Perla et al. (2021) and Wang et al. (2021)
who combine neighbouring mortality framework with the CNN model to achieve
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better forecasting performance. Other recent developments include a locally coherent
multi-population model by Perla and Scognamiglio (2022), applying neural networks
to point and interval forecasts of mortality rates (Schniirch, Korn, 2022) or neural
network-based calibrations of (Poisson) LC multi-population models (Scognamiglio,
2022). An alternative approach, based on transformer architecture which uses
multi-head attention mechanism and positional encoding for key mortality related
features extraction, was recently introduced by Wang et al. (2024), whereas multi-
population mortality models handling long-term forecast divergence of mortality
rates resulting from modelling multiple populations was simultaneously presented
by Scognamiglio (2024).

The GAPC mortality models have a clear parametric structure which ensures
better interpretability (i.e. specific model parameters related to age, period and
cohort effects on mortality). Additionally, such models have well-defined statistical
properties. They can be fitted using the maximum likelihood estimation method,
which ensures consistency, equivariance and efficiency of the model parameter
estimates (Fisher, 1922). GAPC models also allow for straightforward quantification
of prediction uncertainty (e.g. using confidence intervals). Such models also utilise
identifiability constraints to ensure unique parameter estimates and prevent overfitting.
The estimation process itself is efficient and thus practically applicable in real-
world scenarios (e.g. official mortality projections by social security institutions or
estimations of longevity risk for Solvency II requirements). On the other hand, the
majority of GAPC models assume (log) linear nature of mortality trends, which may
not capture more complex dependencies between age, period and cohort effect, e.g.
for smaller populations with non-trivial mortality patterns. They also usually treat
each population independently, which does not allow for capturing common trends
in mortality patterns across the analysed populations.

The main advantages of the neural network-based approach to mortality modelling
are, in particular, the ability to identify complex dependencies between age, period
and cohort effects as well as the possibility to capture common trends between
different populations, notwithstanding their characteristics. On the other hand,
such models usually lack interpretability and explainability (although there are first
developments in that field, e.g. as in the work of Perla, Richman, Scognamiglio and
Wiithrich (2024)). As for the estimation process, it is usually more complex and time-
consuming as compared to GAPC models, especially if training involves extensive
hyperparameter tuning.

The main aim of this paper is to compare the predictive effectiveness of various
single mortality models from the GAPC framework against a feedforward neural
network architecture based on a multiple population approach similar to the one
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proposed by Richman and Wiithrich (2021). Additionally, in order to improve the
performance of the neural network, we conduct hyperparameter tuning focusing on
a broader set of hyperparameters as compared to the original paper.
This study examines the following research questions:
1. How does the predictive effectiveness of mortality models from the GAPC
framework compare to a feedforward neural network architecture based on
a multiple population approach, when applied to selected European populations?
2. Does hyperparameter tuning focusing on a broader set of parameters combined
with ensembling techniques improve the predictive performance of the feedforward
neural network model for mortality modelling?
The analysis was conducted based on the data from selected European countries
available in the Human Mortality Database (HMD).'

Data

In our analysis, we consider mortality data for nine countries (Germany, Spain,
France, Hungary, Italy, Lithuania, Latvia, Poland and Portugal) from HMD to account
for the heterogeneity of mortality patterns among various populations for periods
T={1960,...,2018} with mortality rates for ages A= {0, 1, ..., 99}, split by gender.
We then split the data into two sets of calendar years, T, . = {1960,...,2007} and
T, = 12008, ...,2018} to train and test the model performance respectively.

Additional data transformations we applied are related to unifying the datasets
for East and West Germany (DEUTE and DEUTW respectively) as the combined
DEUTNP dataset contained only the data from 1990 onwards. The calculation
of age specific mortality rates for females and males from Germany was done by
aggregating exposures and total number of deaths per group (male, female), age and
year and calculating mortality rates based on such aggregated measures (for East
and West Germany combined). In order to keep the stability of the neural network
the maximum mortality rate is set to 1, whereas the minimum mortality rate was
set to 0.000001 in cases where the number of deaths was equal to 0 to prevent errors
in the logarithmic transformation of the mortality rates. For fitting models following
the GAPC framework we utilise the StMoMo R package (Villegas, Millossovich and
Kaishev, 2018), whereas for the feedforward neural network model we utilise the
TensorFlow library (Abadi et al., 2016) through Keras API for R (Chollet, 2015).

! Human Mortality Database, https://mortality.org/
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General notation for GAPC mortality models

Let us denote calendar year as t, random variable defining number of deaths
of a given age x at time ¢ as D(x,t) and the observed number of deaths as d(x,t)
where the related central number of people of a given age exposed to risk is denoted
as E°(x,t). Then, we can arrange these data into matrices respectively D(d(x,t))
and E‘=E‘(x,t) having dimensions n_ X n, (with n, ages and n years and n, =
=n,+n, — 1cohorts. Then the force of mortality matrix can be defined as m=

(26

As per generalisation by Villegas, Millossovich and Kaishev (2018), we can then
define the GAPC framework for single population mortality modelling as follows:

lnm(x,t):a(x)+i;fi(x)/fi(t)+7/(c) )

where m(x,t) is the force of mortality for a given age x € [x,,x, ] as of time period
t € [t,t,] and for cohort ¢ € {t, —x,,....t, —x,], a(x) is the age effect of the
mortality i)attern averaged out across the time périods, N is the number of age - period
terms describing the temporal effect £'( t), f'(x) is the age modulating function,
whereas 7 (¢) is a factor reflecting cohort effect (where ¢ = £ — x). Formula (1) denotes
the systematic component of the model. Additionally the model contains a random

n

component D(x,t) having a Poisson distribution (Brouhns et al., 2002), i.e.
D(x,t)~Poiss(E*(x,t) « m(x,t)). (2)

The relation between systematic and random components is given by a link
function g:

which in case of the Poisson distribution is usually the log link function. Alternatively
one could select a binomial distribution with logit link function.

The majority of stochastic mortality models are restricted with parameter constraints
related to the abovementioned age, period and cohort effects (i.e. are identifiable
to a certain transformation ensuring unique parameter estimates). These are applied
using a constraint function mapping the initial vector of parameters into a vector of
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transformed parameters where the latter one satisfies the model constraints without
effect on the log force of mortality In m(x, ). The most popular single population
mortality models based on the GAPC framework are listed below, together with
associated model constraints. Lee Carter model (1992) is the simplest one and is
defined as follows:

Inm(x,t)=a(x)+BY(x)x(t), (4)

with the following parameter constraints: Y, " (t) =0, /" (x) = 1. Itis worth
t X

noting that this model is lacking the cohort effect, thus it cannot capture the non-
linear tendencies in mortality rates well.

Such a component is incorporated in the Renshaw and Haberman (2006) (RH)
model:

Inm(xt) =a(x)+F" (2 (1) +B87(x)r(c), (5)

with following parameter constraints:
k(1) =227"(c) =028V (x) =2 8" (x)=1.
t X X X

Setting A°) to 1 simplifies the abovementioned structure to modified Renshaw
Haberman (mRH) model (2011), which is more stable than the original one, thus it
would be considered in the analysis part.

If the parameters B and SVof RH model are set to 1, then we obtain the so
called age-period-cohort (APC) model (Cairns et al., 2009):

Inm(x,t)=a(x)+&V(t)+7(c), (6)

with the following constraints Y, " (t) =Y 7" (c)= Dy (c)=0.
t X

X

The model tends to be more efficient in the case of dataset structure alterations.
The next model by Cairns Blake and Dowd (2006) assumes that age is linearly
interacting with log mortality and there is no cohort effect:

In m(x,t) =V (t)+(x—x)—x) (). (7)
Two extensions of the CBD model allow for more robust mortality patterns

modelling. Cairns et al. (2009) introduce a more complex M7 model which allows
for capturing additional age-related dynamics by introducing a quadratic component:

13
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~

Inm(xt) =6 (t)+(x =) (£)+((x—x) =) (t)+7(c), (8

given the following constraints:
2oeV(t) =20, k(1) =20,k (1) =27 (e) =22 () =0,
t X X
28 (x) =1,

X

where 07 is the average value of (x—x).
Another extension of the CBD model is proposed by Plat (2009) with additional
parameters related to age and period effects:

Inm(xt)=a(x)+x&V(t)+(x—x)cD(t)+((x=x))e>(t)+7(c), (9)

with analogical constraints as the M7 model.
All of the abovementioned models can be fitted with the maximum likelihood
function as specified by Villegas, Millossovich and Kaishev (2018):

L(d(x,t),&(x,t))zZZw(x,t)(d(x,t)lnéz(x,t)—éz(x,t)—1nd(x,t)z) (10)

where the weights  (x, t) equal to 1 if a given data point (x, #) is included in the model
and 0 otherwise. Given the Poisson distribution of number of deaths, the expected
number of deaths is given by the following formula:

cAi(x, t) = E°(x, t)e(“(")+§f'(">"'(t)”(c)). (12)

Multiple population modelling using neural networks

While designing the neural network model for mortality modelling purposes, we
follow a setup defined by Richman and Wiithrich (2021). The model is fit to mortality
rates for the calendar years 1960-2007, and then the prediction of mortality rates is
performed on the years 2008-2018. The feature space consists of age, calendar year,
region and gender, where the calendar year (or year of death) is treated as numerical
input to the neural network to allow for forecasting future mortality rates beyond the
calendar years on which the model was fitted. 10% of the data from the training set is
used as a validation set (obtained through stratified sampling with regard to age and
calendar year) in order to select the best combination of hyperparameters minimising
the mean squared error (MSE). We treat region, gender and age as categorical features
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transformed through embedding layers (Bengio et al., 2003), which transform values

of categorical features into a lower-dimensional vector whose parameters are learned

during model training. We can define the embedding layer 1, for 0 = {0,,...,0,}

being number of unique categories of cardinality n. Then such a layer transforms

o, Epintoag, - dimensional vector as defined below:

€,(0,)=(&,,(0,)->€,,(0)))- (13)

For the purposes of multiple population modelling based on neural networks,

we can define a single feature vector being a concatenation of previously defined
embedding vectors as

fltxi, j)=(ta(x),r(i),s(j)), (14)

which serves as an input layer for the neural network model used for predicting (log)
mortality as of calendar year t for age x, region i and gender j. Then we can define
the structure of the neural network as comprising of intermediate layers Z'", ..., Z"
with @, neurons and the final output layer y (being prediction of log mortality rates)

as follows:

Z' =F(f(t,xi])) = ¢, (0 + 0 f(t,x,0,])), (15)
ZW=FZz"")=¢, (o) "+ VZ" V) h=2,..,H-1 (16)

y=FZ" ") =9, (0" +a™MZ" ") (17)

where cogj Jisa ﬁh -element intercept vector, o isa (9], X (9].7 )-dimensional weight
matrixand ¢, _ is the activation function which calculates the impact of each neuron
(these may vary between the layers).

Following the approach from Richman and Wiithrich (2021), we set the dimension
of all embedding layers within the input feature vector to 5. The number of intermediate
layers in the network is subject to hyperparameter tuning. For each of the intermediate
layers, we also add dropout layers for regularisation purposes (Hinton et al., 2012),
(where dropout probability for each neuron is subject to hyperparameter tuning)
as well as batch normalisation layers (Ioffe, Szegedy, 2015) which speed up and
stabilise the training process through recentring and rescaling of inputs to network
layers. Similarly to Richman and Wiithrich (2021), we use the back-propagation
algorithm to fit the model. The activation function for intermediate layers is set
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to Rectified Linear Unit (ReLU) (Nair, Hinton, 2010), whereas the last layer has the
sigmoid activation function. Additionally, following the original work by Richman
and Wiithrich (2021), we introduce skip connections between the feature layer and
the last hidden layer as well as the feature layer and the first hidden layer to diminish
the risk of the vanishing gradient problem.

As for the key hyperparameters utilised in the training process, we focus on both
the ones related to the general network architecture as well as the ones responsible
for training process optimization. The hyperparameters related to first area are the
number of layers, number of neurons in each layer and batch size. As for the training
process, we utilise dropout probability, learning rate and patience related to early
stopping or learning rate reduction (i.e. a hyperparameter indicating the number of
epochs with no improvement in MSE value on the validation set after which training
will be stopped or learning rate will be reduced in a given iteration). We select a 5%
subsample of all combinations within the hyperparameter space to speed up the
training process.

To increase the robustness of the model, we average out the predictions of the 4
best models obtained during the hyperparameter tuning process. Such an approach
can help obtain more stable results on the test set and ensure better generalisation
on the data not used during the training process.

Results

Exemplary mortality patterns for the ages and countries mentioned, compared
as of the earliest (1960) year and latest (2018) year in the dataset, are presented in
Figure 1.

Looking at the high-level visualisations, it is easy to infer that mortality rates were
lower in 2018 compared to 1960, they are generally lower for females than for males,
and each country has a specific mortality pattern. Even though mortality decreased
in European countries as compared to past century, one can still observe noticeable
differences in the levels of mortality between Eastern and Western European countries,
resulting not only from differences in healthcare or social security systems but also
on supra-national developments between these two clusters of countries (Carracedo
et al., 2018). As for the year 2018, interestingly, in some Baltic states (i.e. Lithuania
and Latvia) as well as in Hungary, significantly lower mortality rates can be observed
than in other countries analysed in specific younger age groups, indicating very low
or even zero mortality rates for these. Common methods for overcoming such issues
include introducing age-standardised rates (ASR) or smoothing techniques like those
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indicated by Perez-Panades et al. (2020). Those cases are more frequent for lower age
groups in the latest years, which can be observed respectively for females and males
in Figure 2 and Figure 3 (mortality patterns for the latest years are marked green).

Figure 1. Actual mortality rates (log scale) by gender for ages 0-99 from selected
countries - comparison for years 1960 and 2018.

female male

0961

Log mortality rate

8102

Country — DEUT — ESP — FRATNP — HUN — ITA — LTU — LVA — POL — PRT

Source: Authors’ own compilation based on per gender HMD mortality tables for ages 0-99 from selected coun-
tries for years 1960-2018.
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Figure 2. Mortality rates (log scale) for females for ages 0-99 from selected
countries for years 1960-2018

DEUT ESP FRATNP

HUN ITA LTu

Year

2010
2000
1990
1980
1970
1960

Log mortality rate

-

LVA POL PRT

0 25 50 75 100 0 25 50 75 100 0 25 50 75 100
Age

Source: Authors’ own compilation based on per gender HMD maortality tables for ages 0-99 from selected coun-
tries for years 1960-2018.
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Figure 3. Mortality rates (log scale) for males for ages 0-99 from selected countries
for years 1960-2018

DEUT ESP FRATNP

LTu

Year

2010
2000
1990
1980
1970
1960

Log mortality rate

HUN ITA
0 V
5 V
st

LVA POL PRT

0 25 50 75 100 0 25 50 75 100 0 25 50 75 100
Age

Source: Authors’ own compilation based on per gender HMD maortality tables for ages 0-99 from selected coun-
tries for years 1960-2018.

The baseline neural network-based model hyperparameters and results on
the training set are presented in Table 1. The four best models obtained in the
hyperparameter tuning process are shown in Table 2. The hyperparameter tuning
process results in a decrease in MSE values. The ensemble of the 4 best models will
be used for prediction on the test set.
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Table 1. Results of the baseline neural network model with key hyperparameter
values on the training set (years 1960-2007)

g n gl = 3

© [ [a Q = o

= o = 2 leS| o8| & 5

S S < c 5 Z w |l gh|ocg| @ " "

= + F= 9] o o = cC S| €0 = - <

4 | B e |3 B 55 |g2l2z 2 8%

s s sS2 T | a|z| & |f2fI| & & &

0 | 0.0208 | 0.069 0.0000001 6 0.05 | 128 | 0.1 45 20 400 | 250 | 155

Source: Authors’ own compilation based on per gender HMD mortality tables for ages 0-99 from selected coun-
tries for years 1960-2007.

Table 2. Results of the 4 best neural network models with key hyperparameter values
on the training set (years 1960-2007)

g 0 £ T 3
© [ o' Q L2
- 5 & S 1.5 .8 8 |
g g £ c 5 2 g" ch| o3 0 " "
> A = ] o o = c 5| €0 = e =
a | 4 T& S| 8|3 5|55 8= % 8] ¢
s s ) T | 8|z | & |8f2|&2| & i
1| 00150 | 0.0311 | 0.00000001 9 |001]192| 01 | 45 | 20 |1200]| 250 | 250
2 | 00151 | 0.0379 | 0.00000001 6 | 001|224 |005| 35 | 30 | 800 | 250 | 250
3 | 0.0153 | 0.0444 | 0.00000001 9 |003|160| 01 | 35 | 30 | 400 | 250 | 219
4 | 0.0154 | 0.0391 | 0.00000000001 | 9 |[0.01|256 |0.05| 45 | 20 | 400 | 250 | 240

Source: Authors’ own compilation based on per gender HMD mortality tables for ages 0-99 from selected coun-
tries for years 1960-2007.

The results of GAPC and neural network-based ensemble models are illustrated

graphically for the exemplary year (2014) against the observed mortality rates for
females and males in Figures 4 and 5, respectively.
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Figure 4. Comparison of predictions for ages 0-99 against observed mortality rates
(log scale) per country for females as of the year 2014 from the test set

ocut = FRATNP

-10

&

Log mortality

o
[S)

-5

-10

0 25 50 75 100 0 25 50 75 100 0 25 50 75 100
Age
>>>>>> -~ APC_mortality LC_mortality —----- mRH_mortality observed_mortality
Models
————— CBD_mortality M7_mortality NN_mortality === PLAT_mortality

Source: Authors’ own compilation based on per gender HMD mortality tables for ages 0-99 from selected coun-
tries for years 1960-2018.
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Figure 5. Comparison of predictions for ages 0-99 against observed mortality rates
(log scale) per country for males as of the year 2014 from the test set

[0 = FRATNP

-10 &J/F“/

HUN i "y

Log mortality

-10

0 25 50 75 100 0 25 50 75 100 0 25 50 75 100
Age
APC_mortality LC_mortality mRH_mortality observed_mortality
Models
————— CBD_mortality M7_mortality NN_mortality PLAT_mortality

Source: Autor’s own compilation based on per gender HMD mortality tables for ages 0-99 from selected countries
for years 1960-2018.

Mean squared errors for each model per country and gender group on the test
set are presented in Tables 3 and 4.

Table 3. Total MSE of mortality rates for the test set (years 2008-2018)

NN base NNtuned LC CBD mRH PLAT APC M7
0.000261 | 0.000175 | 0.000221 | 0.000331 | 0.000405 | 0.000501 | 0.000621 | 0.004260

Source: Authors’ own compilation based on per gender HMD mortality tables for ages 0-99 from selected coun-
tries for years 1960-2018.
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The analysis of the results by country and gender groups indicates that in the
majority of cases, the neural network models perform better than the other models
(11 country gender groups out of 18). The traditional Poisson-based Lee-Carter
model is the second most frequent model with minimal MSE (6 cases out of 18). As
for the other GAPC-based models, the CBD model has performed the best in a single
country gender group (Males from Italy). The tuned neural network-based model
has also outperformed the base neural network model in 8 out of 11 country gender
groups, as well as regarding total MSE on the test set.

Discussion and conclusions

This article aims to compare the effectiveness of traditional models and neural
networks in mortality modelling and forecasting. Traditionally used stochastic
mortality models have certain limitations, the main one being difficulties in fitting
these models to the data (Richman and Wiithrich, 2021). The development of artificial
intelligence methods has made machine learning models an effective tool in mortality
modelling as well (Deprez et al., 2017; Hainaut, 2018; Levantesi and Pizzorusso, 2018;
Kessy et al., 2022).

The results presented in this paper, based on the data from nine European
countries, show that neural network-based models might have better performance
than the traditional GAPC models.

Referring to the first research question, our results show that the neural network-
based models achieve better results in the majority of analysed country gender groups
(11 out of 18). The Poisson-based Lee-Carter model is the second-best-performing
model (6 cases out of 18).

GAPC models assume (log) linear nature of mortality trends, which may not
capture more complex dependencies between age, period and cohort effect, e.g.
for smaller populations with non-trivial mortality patterns. They also usually treat
each population independently, which does not allow for capturing common trends
in mortality patterns across the analysed populations. On the other hand, such complex
dependencies between age, period and cohort effects as well as the possibility to capture
common trends between different populations, notwithstanding their characteristics,
is possible using the neural network approach. The architecture of such a model is
elastic and can be tailored to analysed populations during the hyperparameter tuning
process. However, it is worth emphasising that the graphs of logarithms of mortality
rates by gender that we obtained, showing that the decline in mortality became clearly
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observable after 1990, are consistent with the probability of dying between the ages
of 15 and 60 based on the same database, i.e. HMD (World Bank Group, 2024).

We can also conclude that the neural network based models achieve better
results for countries that might be perceived as emerging or developing markets
(e.g. Baltic states, Hungary) whereas the Lee-Carter model performs better mostly
for the countries perceived as developed economies (in particular Germany, France
and Italy), e.g. as per classification by Morgan Stanley Capital International (MSCI)
(MSCI, 2024).> As for the total mean squared errors measured on the test set (i.e.
not differentiating between country gender groups), the neural network and Lee
Carter models are also the best performing models. As per analysis by Shen et al.
(2024), some of the abovementioned countries fall into the same clusters based on
mortality pattern similarities.

As for the second research question, we have found that extended hyperparameter
tuning and ensembling of the best neural network architectures result in better
predictions on the test set than the baseline model without applying these techniques.
It is also worth noting that the baseline neural network model still performed better
as compared to models based on the GAPC framework for selected countries with
smaller populations (e.g. Hungary, Lithuania or Latvia).

The model always would need to be selected on a case-by-case basis, and, in
the case of more complex ones (neural network-based), a thorough hyperparameter
selection could contribute to the robustness of the model and increased prediction
stability.

Another area worth investigating while analysing GAPC and neural network-based
mortality models is the impact of mortality shocks (e.g. COVID-19 pandemic) on the
model behaviour. As for GAPC models, pandemic shocks could negatively affect all of
the mortality pattern-related effects, i.e. the temporal effect (shift in gradual decrease
in mortality over time), age group effect (especially for the advanced age groups), as
well as the cohort effect. Simple extrapolation of mortality patterns observed for given
age intervals using the traditional ARIMA approach would not necessarily reflect
the impact of pandemic shocks on future mortality trends accurately (Ashofteh,
Bravo, 2021). Even though such models explicitly incorporate the age effect, the
future trends may be misestimated if pandemic shock disproportionately affects
specific age groups. Such unusual mortality pattern shifts could also increase the
forecast uncertainty (i.e. result in wider confidence intervals of the post-pandemic
forecast). The neural network-based models, on the other hand, are expected to be

2 Morgan Stanley Capital International, https://www.msci.com/our-solutions/indexes/developed-
markets, https://www.msci.com/our-solutions/indexes/emerging-markets.
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more flexible in handling mortality shocks but could also overfit to the training data
without proper hyperparameter tuning.

As for future developments taking into account mortality shocks, one might
consider comparative analysis with the use of combined neural networks of various
types (recurrent, convolutional, transformer-architecture based, generative adversarial
networks, etc.) as well as model ensembling techniques between traditional and
neural network based architectures. Ensembling allows for increased forecasting
accuracy by integrating several predictions from underlying models, making the
model more robust and less prone to overfitting (Breiman, 1996). One could also
consider the incorporation of the Bayesian approach to account for uncertainties
related to mortality shocks and external factors related to irregularities in mortality
patterns, such as emigration and immigration (Wisniowski et al., 2015). Such an
approach could increase the model robustness and allow for a better generalisation
about future trends, also accounting for post pandemic factors affecting mortality
patterns in various populations.
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