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Introduction

Determining the relationships among economic variables remains one of the funda-
mental challenges in economics. Researchers often aim to understand how changes 
in certain factors influence key indicators such as GDP, inflation, employment, and 
industrial output, or explore the mechanisms through which these interactions shape 
overall economic performance and long-term growth.

In financial research, the relationships among variables are more complex and 
multidimensional. This complexity arises from the cyclical nature of financial variab-
les, the disproportionality of effects relative to causes, and the feedback mechanisms 
that frequently characterise such interactions. Moreover, financial data are often 
influenced by factors that are difficult to quantify, reflecting, among other things, 
the behavioural nature of financial markets. These challenges become evident when 
analysing linkages between the prices of rare earth elements and the quotations of 
financial or commodity assets, derivatives, cryptocurrencies, exchange rates, or ma-
croeconomic indicators.

Regression analysis is commonly employed to explore such relationships. Howe-
ver, this approach suffers from a key limitation – it cannot establish causality between 
the variables included in the model. Regression models assume, ex ante, which varia-
ble is explanatory and which is dependent, and then estimate parameters to forecast 
future values of the dependent variable. In this sense, regression may be viewed as an 
extension of Pearson’s correlation. An alternative approach is causality analysis, typi-
cally implemented through atheoretical vector autoregressive (VAR) models, which 
impose more stringent requirements on the statistical properties of time series.

The primary objective of this study is to examine Granger causality among the re-
turns of selected rare earth elements, i.e. lead and zinc, WTI crude oil, and the EURO 
STOXX 50 index. Identifying causal linkages between these assets is crucial, as it may 
facilitate the formation of heterogeneous asset classes and, consequently, support the 
construction of diversified portfolios of financial instruments. Furthermore, the fin-
dings may contribute to the development or refinement of investment strategies that 
incorporate the instruments under analysis.

The article begins with a comprehensive review of the literature, focusing on em-
pirical evidence concerning the interdependencies between rare earth element re-
turns and other financial and commodity variables. Subsequently, two econometric 
models are specified and estimated to identify causal relationships among the returns 
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of selected rare earth elements, crude oil quotations, and an index reflecting exposure 
to the broad equity market. The empirical analysis includes the interpretation of im-
pulse response functions (IRFs) and forecast-error variance decomposition (FEVD), 
which are integral components of VAR-based modelling. Finally, the results are syn-
thesised and conclusions are drawn.

Literature review

Studies examining price interdependencies between metals and other variables can 
be broadly classified into four groups.

The first group of studies focuses on relationships among individual metals. This 
research stream includes, for example, Ciner (2001), who demonstrated that gold 
prices Granger-cause silver quotations. These findings were extended by Krawiec 
and Górska (2015), who confirmed causal linkages for a broader set of metals, in-
cluding palladium and platinum. Based on their results, they concluded that silver 
and platinum quotations, as well as palladium and silver, exhibit significant interde-
pendencies. A different set of metals and methodology was employed by Śmiech & 
Papież (2012), whose analysis revealed that between 2000 and 2003, copper prices 
Granger-caused gold, silver, and platinum quotations, whereas after 2004, gold, silver, 
and copper prices Granger-caused platinum quotations. Another perspective was of-
fered by Baselou et al. (2014), who examined all non-ferrous metals listed on the 
London Metal Exchange between 2000 and 2013 using a two-variable VAR model. 
Their findings indicate that aluminium prices influence copper quotations, lead pric-
es affect nickel quotations, and copper prices determine lead and nickel quotations. 
While such analyses enhance understanding of metal market dynamics, they remain 
limited by the absence of a broader perspective on interdependencies within nation-
al economies. For instance, gold prices may serve as useful predictors of inflation, 
while industrial metals such as steel and copper can act as indicators of economic 
growth. Subsequent research was undertaken by Apergis and Apergis (2017), who 
established the existence of a long-run relationship between rare earth prices and 
renewable energy consumption. Gao & Liu (2024) adopted a considerably broader 
set of variables and demonstrated that the rare earth metals market functions as a net 
spillover recipient from the base metal, clean energy, and ESG markets, which should 
be regarded as the three principal net risk emitters. Furthermore, their findings indi-
cate that financial conditions and investor sentiment exert a significant influence on 
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the strength of these interconnections. Additionally, the frequency of data employed 
has a material impact on the robustness and nature of the results obtained. Zheng et 
al. (2022) conducted a different type of study, examining volatility spillovers between 
crude oil, renewable energy, and high-technology markets. Their results showed that 
there are volatility spillovers between renewable energy and high-technology stock 
markets, and that the renewable energy market is more closely linked to high-tech-
nology than to crude oil.

The second group of studies examines relationships among metals that are join-
tly consumed due to their shared application in specific technologies. Pradhanan-
ga (2016) notes that prices of metals with interdependent uses may exhibit mutual 
transmission effects. Similar conclusions were drawn by Rossen (2015), who analy-
sed long-term price series for steel, iron, and molybdenum. Shammugam et al. (2019) 
confirmed this hypothesis, observing that joint consumption of primary metals influ-
ences their price linkages. They also emphasised that metals jointly consumed exhibit 
stronger interdependencies than those jointly produced. Tok (2025) extended this 
line of research by exploring the relationship between the oil market and metals criti-
cal for renewable energy technologies. The findings indicate that copper and alumi-
nium are the most significant information transmitters, while oil prices, particularly 
Brent and WTI, become more sensitive to metal markets during periods of crisis. 
Moreover, as the energy transition accelerates, critical metals increasingly affect com-
modity markets, influencing energy pricing dynamics among other factors. 

The third group of studies concerns relationships among metals jointly produced. 
The tendency of price paths to move together in such cases may result from similar 
reactions to specific market information. According to Butti and Sapir (1998), a good 
example involves primary metals and those extracted as by-products. Here, the price 
of one metal depends on the market conditions of another, which may be influenced 
by numerous factors. One of the earliest authors to address this issue was Campbell 
(1985), who, using a sign test, demonstrated that gold and silver quotations, as well 
as lead and zinc, are interrelated. Similar studies, though employing different me-
thodologies, were conducted by Kim and Heo (2012). Analysing metals jointly mi-
ned and subsequently used in solar panel production, they showed that the prices 
of metals accompanying zinc and copper extraction, namely germanium, indium, 
cadmium, and selenium, are interconnected. These relationships are unidirectional, 
running from zinc to cadmium and germanium, and from copper to selenium. Cor-
relations between primary metals and by-products were also examined by Afflerbach 
et al. (2014), whose findings differed from those of previous studies. Of the thirteen 
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metal pairs considered, only germanium and zinc, and tin and copper exhibited si-
gnificant linkages, whereas pairs such as aluminium and gallium or cobalt and nickel 
displayed weak interdependencies. Su et al. (2025) analysed similar issues, focusing 
on the dynamic relationship between copper and its by-product metals, cobalt and 
nickel, within the upstream raw material market for new energy vehicles. Their fin-
dings indicated that spillover effects among the copper, cobalt, and nickel markets 
vary over time. Moreover, the copper market is the predominant source of volatility 
for the other two markets, whereas the cobalt market contributes minimally. Within 
these relationships, Su et al. (2025) also found that both copper and nickel act as net 
contributors of shocks to the other markets, while cobalt primarily receives shocks.

The fourth group of studies focuses on the relationships between rare earth ele-
ment prices and the quotations of other financial instruments or various micro- and 
macroeconomic variables. This research stream is represented, among others, by Re-
boredo and Ugolini (2020), who analysed the transmission mechanism between rare 
earth stocks and base metals, gold, clean energy, oil, and global MSCI stock mar-
kets. Their findings indicate that price connectedness between rare earth and other 
stock markets varies across volatility regimes. In a low-volatility regime, rare earth 
stocks are closely linked to the base metals market, both receiving and transmitting 
substantial price spillovers, while their connections with clean energy, gold, oil, and 
general stock markets remain weak. In contrast, in a high-volatility regime, rare earth 
prices exhibit stronger co-movement with price fluctuations in clean energy, oil, and 
broader stock markets. Song et al. (2021) also examined the linkages between rare 
earth markets and other segments of the financial and commodity markets. Their 
findings showed that volatility connectedness between the rare earth stock market 
and clean energy, global equity, base metals, gold, and crude oil markets is generally 
stronger than return connectedness. During the COVID-19 outbreak, the rare earth 
index displayed close interdependence with clean energy, global equity, and oil in-
dices, while remaining primarily a receiver of return and volatility throughout the 
entire period. Notably, during the outbreak of the pandemic, the rare earth stock 
index showed strong linkages with clean energy and global equity. Furthermore, the 
volatility of the rare earth stock index exhibited a pronounced interdependence with 
crude oil price volatility.
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Data and methodology

Data
The empirical analysis was based on data encompassing four categories of variables. 
The first two comprised lead and zinc prices, which serve as benchmark indicators 
representative of the global market for these non-ferrous metals. These prices are 
determined by the largest exporter of each commodity. The time series were com-
plemented by historical values of the EURO STOXX 50 index, which tracks leading 
companies across Eurozone supersectors, thereby ensuring a diversified and liquid 
portfolio. The index is weighted according to free-float market capitalisation, with 
a maximum allocation of 10 per cent per constituent. It functions as the underlying 
instrument for over 25 billion euros in ETF assets, while futures and options on the 
index rank among the most actively traded equity derivatives on Eurex. Moreover, 
more than 160,000 structured products are linked to the EURO STOXX 50.

In addition to historical lead and zinc prices and the EURO STOXX 50 index, the 
study incorporated global WTI crude oil benchmark prices, which are determined by 
the largest global exporter of the commodity. The dataset comprises monthly observa-
tions spanning the period from June 2011 to June 2025. All data were sourced from 
the FRED database maintained by the Federal Reserve Bank of St. Louis, except for 
historical index quotations, which were obtained from the Standard & Poor’s website.

Descriptive statistics for the individual variables are presented in Table 1.

Table 1. Descriptive statistics of the time series of log returns of the analysed variables

Variable Mean Min. Max. Std. dev. Pr (skew-
ness)

Pr (kur-
tosis)

Prob 
>chi2

d.ln.lead. -0.00120 -0.1544 0.1376 0.0459 0.1182 0.2840 0.1621

d.ln.zinc 0.00122 -0.1624 0.1451 0.0567 0.1222 0.5007 0.2367

d.ln.
EUROS-
TOXX50

0.00341 -0.2197 0.1548 0.0500 0.0007 0.0006 0.0001

d.ln.WTI -0.00231 -0.5465 0.5280 0.1083 0.0001 0.0000 0.0000
Source: authors’ own elaboration

From the data presented in Table 1, it can be concluded that the variable d.ln.
WTI exhibits the lowest mean value while simultaneously revealing the highest stan-
dard deviation. In contrast, the variable corresponding to the logarithmic rates of 



Commodity and Financial Market Linkages: Granger Causality... 37

return on the EURO STOXX 50 index records the highest mean, whereas d.ln.lead 
demonstrates the lowest standard deviation. Furthermore, the p-values of 0.1182 and 
0.2840 for d.ln.lead and 0.1222 and 0.5007 for d.ln.zinc suggest that the skewness and 
kurtosis of these variables do not significantly deviate from those of a normal distri-
bution at the 5% significance level. Consequently, based on skewness and kurtosis, 
the null hypothesis of a normal distribution cannot be rejected for these variables. 
Conversely, for the remaining variables, i.e. d.ln.EUROSTOXX50 and d.ln.WTI, the 
analysis of skewness and kurtosis provides clear evidence that the null hypothesis of 
a normal distribution should be rejected.

Methodology

This study adopts an approach grounded in the vector autoregressive model with  
lags, i.e.  model, originally formulated by Sims (1980) and subsequently extended 
by Granger (1980). The model is applied to investigate the interdependencies be-
tween logarithmic returns of selected non-ferrous metals (lead and zinc) and relative 
changes in the logarithmic prices of WTI crude oil and the logarithmic values of the 
EURO STOXX 50 index.

In its standard form, the  model assumes that all variables are treated a priori 
as jointly endogenous. This means that each variable ​ is influenced not only by the 
lagged values of all variables included in the model but also by its own stochastic 
component and stochastic components of all other variables​.

For the purposes of this analysis, the following model is proposed:
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As part of the study, the data were organised so that the time series related to the 
quotations of a single non-ferrous metal was always included in the dataset. Con-
sequently, two models were specified: the first incorporated logarithmic return of 
lead, WTI crude oil benchmark, and EURO STOXX 50 index (model 1); the second 
included logarithmic returns of zinc, WTI crude oil benchmark, and EURO STOXX 
50 index (model 2). From a technical perspective, this implies that in each model, the 
number of rows in the vectors and matrices in the equation associated with  model 
was set at three, i.e. .

Several factors highlight the limitations of the chosen approach. First, applying 
the  model assumes that all time series are stationary. Second, the series must not 
exhibit cointegration; if cointegration is present, a VEC model should be used in-
stead. Third, it is important to note that the  model is atheoretical, meaning it is 
not based on any underlying economic theory. Finally, the standard  model ignores 
potential issues such as non-linearity, conditional heteroskedasticity, and structural 
breaks in parameters. 

To examine the interdependencies among the selected variables, a structured six-
-step procedure was applied:
1.	 Determining stationarity of the time series.
2.	 Selecting the optimal lag length.
3.	 Testing for cointegration among the variables.
4.	 Conducting Granger causality tests to determine the direction of the relation-

ships.
5.	 Investigating stability and autocorrelation of residuals.
6.	 Plotting impulse response functions (IRFs) and performing forecast-error va-

riance decomposition (FEVD).

Results

Following the methodology outlined earlier, the first step involved examining the sta-
tionarity of the time series. Stationarity is a critical aspect of the proposed approach, as 
the  model requires all variables to be integrated of order one, i.e., . To verify this, the 
Augmented Dickey–Fuller (ADF) and Phillips–Perron (PP) tests were applied. Although 
these tests are widely used in time series analysis, they may produce unreliable results 
when applied to small samples. Given that the dataset comprises 169 observations, the 
assessment of stationarity was based on these tests. The results are presented in Table 2.
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The data reported in Table 2 indicate that all variables included in the model 
are non-stationary in levels but become stationary after first differencing (at the 1% 
significance level). This implies that each time series is integrated of order one, . It is 
worth noting that this property holds regardless of which unit root test is employed.

Table 2. Unit root tests of the variables.

Variable Augmented Dickey–Fuller 
(ADF) Test

Phillips–Perron (PP) Test Stationarity 
Order

At level At 1st 
difference

At level At 1st 
difference

ln.lead. -3.229 -12.141*** -3.358 -12.117***

ln.zinc -1.778 -11.222*** -2.033 -11.234***

-0.895 -13.078*** -0.778 -13.150***

ln.WTI -2.309 -9.875*** -2.393 -9.549***

*** indicates significance at the 1% level
Source: authors’ own elaboration

The data reported in Table 2 indicate that all variables included in the model 
are non-stationary in levels but become stationary after first differencing (at the 1% 
significance level). This implies that each time series is integrated of order one, . It is 
worth noting that this property holds regardless of which unit root test is employed.

In the next stage of the analysis, the optimal lag order was determined. For 
this purpose, two criteria were applied: the Final Prediction Error (FPE) and 
the Akaike Information Criterion (AIC). The results are presented in Table 3.

Table 3. Optimal lag length selection.

Models Lag FPE AIC
Model 1 0

1

2

3

4

5

4.8e-08

4.6e-08

4.6e-08

4.5e-08

4.3e-08

4.3e-08*

-8.33991

-8.38367

-8.38732

-8.41008

-8.44670

-8.45345*
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Model 2 0

1

2

3

4

7.8e-08

7.3e-08

7.3e-08

7.5e-08

7.0e-08*

-7.84848

-7.91668

-7.92613

-7.89697

-7.95879*
* indicates the optimal lag length based on the criterion. 
Source: authors’ own elaboration

The key conclusion that can be drawn from the data presented in Table 3 is that, 
in model 1, the optimal lag order is five, whereas in model 2 it is four. This finding 
provides an important basis for later phases of the analysis, including model estima-
tion and the investigation of Granger causality.

In the subsequent stage, the procedure focused on identifying long-run relation-
ships among the analysed variables. For this purpose, the Johansen cointegration 
test was conducted. As cointegration analysis applies to non-stationary variables, 
the input data were transformed into logarithmic form of the corresponding values 
rather than their first differences. The results are reported in Table 4.

Table 4. Johansen test for cointegration.

Model 1 Model 2

Maximum Rank Trace Statistics Trace Statistics Critical Value (5%)
0

1

2

21.0489*

6.5618

0.2759

14.2809*

6.2484

1.5085

29.68

15.41

3.76

Maximum Rank Maximum Statistics Maximum Statistics Critical Value (5%)
0

1

2

14.4871

6.2859

0.2759

8.0325

4.7399

1.5085

20.97

14.07

3.76
* indicates order of cointegration.
Source: authors’ own elaboration

The data presented in Table 4 indicate that both the trace statistic and the maxi-
mum statistic do not exceed the corresponding critical values for zero cointegrating 
equations (a maximum rank of zero). On this basis, it can be inferred that there is 
no cointegration among the variables considered in either model 1 or model 2. This 
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implies the absence of long-term relationships between ln.lead, ln.EUROSTOXX50 
and ln.WTI, as well as between ln.zinc, ln.EUROSTOXX50 and ln.WTI. 

In the next stage of the analysis, the Granger causality test was conducted. The 
results obtained for models 1 and 2 are reported in Table 5.

Table 5. The Granger causality tests for models 1 and 2.

Models Equation Excluded chi sq. df p-value
Model 1 d.ln.lead

d.ln.lead

d.ln.lead

d.ln.EUROS-
TOXX50

d.ln.EUROS-
TOXX50

d.ln.EUROS-
TOXX50

d.ln.WTI

d.ln.WTI

d.ln.WTI

d.ln.EUROS-
TOXX50

d.ln.WTI

ALL

d.ln.lead

d.ln.WTI

ALL

d.ln.lead

d.ln.EUROS-
TOXX50

ALL

15.970

21.409

32.759

13.477

20.009

37.049

17.843

20.014

28.664

5

5

10

5

5

10

5

5

10

0.007

0.001

0.000

0.019

0.001

0.000

0.003

0.001

0.001

Model 2 d.ln.zinc

d.ln.zinc

d.ln.zinc

d.ln.EUROS-
TOXX50

d.ln.EUROS-
TOXX50

d.ln.EUROS-
TOXX50

d.ln.WTI

d.ln.WTI

d.ln.WTI

d.ln.EUROS-
TOXX50

d.ln.WTI

ALL

d.ln.zinc

d.ln.WTI

ALL

d.ln.zinc

d.ln.EUROS-
TOXX50

ALL

9.9017

13.329

23.012

8.3350

19.981

28.141

14.192

11.385

23.661

4

4

8

4

4

8

4

4

8

0.042

0.010

0.003

0.080

0.001

0.000

0.007

0.023

0.003

Source: authors’ own elaboration

Based on the data presented in Table 5, four key conclusions can be drawn for mo-
del 1. First, d.ln.lead is Granger-caused by the lagged values of d.ln.EUROSTOXX50 
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and d.ln.WTI. Second, d.ln.EUROSTOXX50 is Granger-caused by the lagged values 
of d.ln.lead and d.ln.WTI. Third, d.ln.WTI is Granger-caused by the lagged values of 
d.ln.lead. Fourth, all these causal relationships are bidirectional, indicating that the 
dependencies among d.ln.lead, d.ln.EUROSTOXX50, and d.ln.WTI exhibit bidirec-
tional linkages. Consequently, it can be concluded that any variable from Model 1 is 
informative for forecasting the values of the remaining variables within the model. 
Alternatively, this suggests that including any of these variables enhances the predic-
tive accuracy and overall robustness of forecasts generated by model 1.

With regard to model 2, the results indicate that d.ln.EUROSTOXX50 and d.ln.
WTI are Granger-causes of d.ln.zinc. Furthermore, d.ln.EUROSTOXX50 is Gran-
ger-caused by d.ln.WTI, while d.ln.WTI is Granger-caused by the lagged values of 
both d.ln.zinc and d.ln.EUROSTOXX50. It is worth emphasising that all causal rela-
tionships are bidirectional except for the causality between d.ln.zinc and d.ln.EURO-
STOXX50, which is unidirectional.

Subsequently, as part of the post-estimation procedure, tests for residual auto-
correlation and model stability were conducted. The results are presented in Tables 6 
and Figure 1. 

Table 6. LM test for the presence of the ARCH effect in residuals.

Model 1 Model 2

Lag chi sq. p-value chi sq. p-value
1

2

3

4

5

5.5923

10.3309

3.6070

14.3831

12.6535

0.77992

0.32436

0.93533

0.10934

0.17892

19.3614

7.4063

9.6696

10.3972

14.0548

0.02229

0.59489

0.37789

0.31930

0.12039
Source: authors’ own elaboration

Based on the information in Table 6, it can be concluded that there is no evidence 
of autocorrelation in the residuals for any of the five lag orders tested in either model 
1 or model 2. This suggests that the models are not misspecified.
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Figure 1. Eigenvalues of the companion matrix for: a) model 1 and b) model 2.
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At the same time, as shown in Figure 1, for both models all unit roots fall within 
the unit circle, indicating that the models are both reliable and stable.

In the next stage of the research, the IRFs are established. It is important to em-
phasise that each function illustrates the effect of a shock in an endogenous variable 
on the whole system of equations in the  model. In all figures presented in Appendices 
A and B. The shaded area represents the interval of one standard deviation around 
the solid line, which shows the response of the endogenous variable to the impulse.

The empirical results indicate that, in both models, shocks to individual variables 
exhibit a tendency to decay over time. Specifically, in model 1:
•	 The effect of a shock to d.ln.WTI on subsequent values of d.ln.EUROSTOXX50 

is greater than the reverse effect. At the same time, d.ln.EUROSTOXX50 exhibits 
a negative response from the first to the third lag following a shock to d.ln.WTI, 
then shifts to a positive response in the fourth lag. From the fifth lag onwards, the 
effect converges towards zero.

•	 The effects of a shock to d.ln.EUROSTOXX50 on future values of d.ln.lead, as 
well as the effects of a shock to d.ln.lead on future values of d.ln.EUROSTOXX50, 
are both moderate.

•	 d.ln.lead demonstrates a positive response in the first, second, and third lags, and 
a negative response in the seventh lag, following a shock to d.ln.WTI. Conversely, 
d.ln.WTI exhibits a positive response in the first and fifth lags and a negative re-
sponse in the fourth lag following a shock to d.ln.lead.
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In model 2:
•	 As previously, the effect of one-standard-deviation shock to d.ln.WTI on futu-

re values of d.ln.EUROSTOXX50 is greater than the reverse effect. At the same 
time, d.ln.EUROSTOXX50 exhibits a negative response from the first to the third 
lag following a shock to d.ln.WTI, then shifts to a positive response in the fourth 
lag. From the fifth lag onwards, the effect quickly vanishes.

•	 The effect of a shock to d.ln.EUROSTOXX50 on future values of d.ln.zinc, as well 
as the effect of a shock to d.ln.zinc on future values of d.ln.EUROSTOXX50, are 
both moderate.

•	 d.ln.zinc demonstrates a positive response in the first and second lags following 
a shock to d.ln.WTI, while d.ln.WTI exhibits a positive response in the first and 
third lags and a negative response in the fourth lag following a shock to d.ln.zinc.
Finally, FEVD is performed. It should be noted that, while IRFs trace the effect of 

a shock to an endogenous variable across the entire system of equations in the  mo-
del, variance decomposition is employed to separate the variation in an endogenous 
variable into the component shocks to the model. The results of the variance decom-
position are presented in the Appendices C and D.

An examination of Appendices C and D indicates that, in both models, the pre-
dominant share of variation in d.ln.lead, d.ln.zinc, d.ln.EUROSTOXX50, and d.ln.
WTI is attributable to shocks originating from these variables. Although the contri-
bution of other variables to the variation in d.ln.lead, d.ln.zinc, d.ln.EUROSTOXX50, 
and d.ln.WTI tends to increase over time, it remains relatively minor throughout the 
entire period.

Conclusions

The primary objective of this study was to examine Granger causality among the re-
turns of selected rare earth elements (lead and zinc), WTI crude oil, and the EURO 
STOXX 50 index. The analysis employed two vector autoregressive models. A key 
prerequisite for VAR modelling was satisfied, as all variables were found to be inte-
grated of order one. Moreover, the Johansen cointegration test confirmed the absence 
of long-term relationships among the variables in both models, thereby validating the 
chosen specification. Post-estimation diagnostics indicated that both models were 
reliable and stable, with all unit roots lying within the unit circle and residuals exhi-
biting no autocorrelation across tested lag orders.
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The Granger causality tests yielded distinct insights for the two models. In model 
1 (lead, EURO STOXX 50, WTI), all causal relationships were bidirectional, indica-
ting that dependencies among d.ln.lead, d.ln.EUROSTOXX50, and d.ln.WTI opera-
te in both directions. Consequently, each variable within model 1 provides valuable 
information for forecasting the others, thereby enhancing predictive accuracy and 
robustness.

In model 2 (zinc, EURO STOXX 50, WTI), d.ln.EUROSTOXX50 and d.ln.WTI 
were found to Granger-cause d.ln.zinc. Additionally, d.ln.WTI Granger-causes the 
lagged values of both d.ln.zinc and d.ln.EUROSTOXX50. All causal relationships in 
model 2 were bidirectional, with the sole exception of the link between d.ln.zinc and 
d.ln.EUROSTOXX50, which was unidirectional.

IRFs analysis revealed that shocks to individual variables tend to dissipate over 
time in both models. In model 1, the impact of a shock to d.ln.WTI on future values 
of d.ln.EUROSTOXX50 was greater than the reverse effect. Following a WTI shock, 
d.ln.EUROSTOXX50 exhibited a negative response from the first to the third lag, 
turning positive in the fourth lag. A similar pattern emerged in model 2, where the 
effect of a WTI shock on d.ln.EUROSTOXX50 exceeded the inverse.

FEVD indicated that the dominant share of variation in d.ln.lead, d.ln.zinc, d.ln.
EUROSTOXX50, and d.ln.WTI is attributable to shocks originating within the re-
spective variables. Although the influence of other variables increases over time, it 
remains comparatively minor throughout the analysed period. Identifying these cau-
sal linkages is crucial, as it may support the formation of heterogeneous asset classes 
and, ultimately, the construction of well-diversified portfolios. Furthermore, these 
findings contribute to the development or refinement of investment strategies that 
incorporate the instruments examined in this study.
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