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Abstract

Despite intense policy attention, artificial intelligence (AI) adoption in the Polish
healthcare system remains far more visible in rhetoric than in formal procurement
requirements. This study provides a managerial and policy-oriented mapping of Al
deployment intent by analysing public procurement as an empirical proxy for orga-
nisational investment decisions. Using official repositories the Polish Public Procu-
rement Bulletin (BZP) and EU Tenders Electronic Daily (TED), the study compiled
a corpus of 85,501 healthcare-related notices published in 2022-2024 and applied
a deliberately conservative, multi-stage identification pipeline combining large-lan-
guage-model screening, Terms of Reference (TOR) verification, and expert oversight.
Only 210 procedures (approximately 0.25% of the corpus) contained explicit, verifia-
ble AI functionality at TOR level, highlighting a substantial gap between ‘Al hype”
and procurement-grade specification. The confirmed Al procurements are strongly
concentrated in clinical applications (64.2%), while administrative processes account
for 15% and research/scientific applications for 14%. The findings suggest a structural
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imbalance that may reflect not only technology maturity and clinical prestige, but
also asymmetric funding incentives, including the National Recovery Plan (KPO),
which has explicitly linked parts of digital-health modernisation to clinically framed
Al implementations more strongly than to back-office automation. The article discus-
ses governance implications under the EU Al Act, and argues that administrative Al
can provide a lower-risk, faster-to-benefit pathway to measurable operational value,
if procurement strategies and incentive structures are rebalanced.

Keywords: artificial intelligence, healthcare system, public procurement, hospital
management, operational efficiency; EU AI Act; National Recovery Plan

JEL Classification: 11; H57; O33; L86

1. Introduction

1.1. Background: Al in healthcare beyond the clinical hype

The rapid expansion of artificial intelligence (AI) in healthcare has attracted susta-
ined attention from policymakers, clinicians and technology vendors across Europe.
Large-scale public programmes and optimistic productivity narratives have helped
position Al as a strategic lever for modernising health systems and addressing per-
sistent capacity constraints (Ng Kok Wah, 2025, pp. 55-56). Economic modelling has
also been used to argue that automation and decision support could yield sizable
efficiency gains at system level (Ng Kok Wah, 2025, pp. 55-56).

Despite this breadth of interest, the dominant policy and commercial narrative
remains disproportionately centred on clinical applications, particularly in data-rich
domains such as diagnostic imaging, radiology, pathology and clinical decision sup-
port. Medical imaging has effectively become the canonical use case, with a growing
ecosystem of solutions targeting triage, reconstruction and lesion detection (Martin
et al., 2025, pp. 2-3; Bukowski et al., 2020). Professional societies have also begun to
issue specialty guidance, for example in endoscopy (Messmann et al., 2022, pp. 1211-
1212). In parallel, health technology assessment (HTA) scholarship has expanded to
question how existing HTA domains should be adapted for AI-based medical devices
(Boverhof et al., 2024, p. 4; Farah et al., 2024, p. 4). At national level, mapping studies
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similarly emphasise clinical and patient-facing digitisation trajectories, including te-
lemedicine and eHealth initiatives (Glinkowski et al., 2025, p. 1).

By contrast, non-clinical Al applications, particularly those aimed at hospital ad-
ministration and management, remain comparatively under-examined. Early con-
tributions point to potential value in areas such as operational forecasting, resource
allocation and process automation (Urbi & Tiva, 2025, p. 34), as well as decision sup-
port for management functions (Alves et al., 2024, p. 11) and broader administrative
performance improvement agendas (Almagadi et al., 2025). Evidence on organisatio-
nal readiness and adoption dynamics is also emerging, including descriptive insights
from hospital IT decision-makers (Weinert et al., 2022).

This imbalance matters because the implementation risks, evidentiary require-
ments and governance challenges of clinical AI differ markedly from those of ad-
ministrative Al. Clinical tools often require rigorous validation, continuous mo-
nitoring and careful consideration of workflow integration and safety (Boverhof
et al., 2024, p. 4; Coiera & Liu, 2022; Chomutare et al., 2022, pp. 10-14). Admini-
strative and managerial applications may be lower-risk in clinical terms, yet they
can still reshape organisational processes, accountability structures and resource
distribution (Alves et al., 2024, p. 11; Almagadi et al., 2025; Sciarretta et al., 2022, p.
2). Procurement and implementation frameworks therefore need to be assessed not
only for their technical adequacy but also for their ability to support integration,
monitoring and evaluation across diverse hospital contexts (Urbi & Tiva, 2025, p.
34; Khan et al., 2024).

In this article, the term “deployment inequalities” refers to systematic differences in
the adoption and operationalisation of Al across settings, functions and organisational
capacities. Such inequalities can be reinforced by uneven access to infrastructure, specia-
list staff and implementation know-how;, which in turn shapes where Al is piloted, scaled
and sustained in routine practice (Martin et al., 2025, pp. 2-3; Bukowski et al., 2020).

1.2. Problem statement and research gap

Although several strands of literature address clinical AI, HTA, and high-level digi-
tal transformation, there is limited empirical work that systematically maps where
Al is being adopted in hospitals and whether adoption concentrates in particular
functions or settings. Existing procurement-oriented syntheses indicate that most
implementation guidance remains focused on planning and evaluation, with much
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less attention to the operational phases of ‘doing’ and ‘acting’ (Khan et al., 2024). At
the same time, national and sector reports emphasise the perceived need for modern
technologies and Al, but often lack granular evidence on real-world uptake across
organisational processes (Bartusek & Kulawik, 2021, p. 133).

The motivation for this study is therefore twofold. First, it seeks to clarify whether
AT adoption in healthcare is skewed towards clinical use cases at the expense of admi-
nistrative innovation, despite the potential of Al to relieve operational pressure and
improve management capabilities. Second, it assesses what these patterns imply for
evidence generation and funding decisions, given that economic evaluations of Al
remain relatively scarce and heterogeneous.

Notably, a recent scoping review of economic evaluations identified only a small
number of robust cost-effectiveness studies relative to the overall volume of AI publi-
cations, highlighting the methodological and reporting gaps that limit comparability
across settings and tools (Gomez Rossi et al., 2022).

This evidence gap is particularly salient in Poland, where digital transformation
has progressed rapidly in selected domains, yet implementation remains uneven
across organisations and regions (Glinkowski et al., 2025, p. 1). Moreover, the ad-
option of Al intersects with public-sector governance and administrative law, raising
questions about accountability, transparency and legal remedies in the event of algo-
rithmic error or contested decisions (Jakubek-Lalik, 2024).

1.3. Aim and research questions

To address these issues, this article investigates how Al adoption is distributed be-
tween clinical and administrative domains, and whether observable patterns suggest
structural inequalities in deployment across hospitals and healthcare systems.

Methodologically, the study draws on publicly available procurement data as
a pragmatic proxy for adoption signals, building on procurement frameworks rese-
arch that demonstrates how purchasing and contracting artefacts can reveal imple-
mentation priorities and bottlenecks (Khan et al., 2024; Ramsay et al., 2025, p. 1).

RQI: What types of Al applications (clinical vs administrative) are most frequen-
tly procured and implemented in hospitals?

RQ2: How do adoption patterns vary across hospital functions and organisatio-
nal characteristics?

RQ3: What factors appear to contribute to observed deployment inequalities, and
what are the implications for policy and governance?
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The analysis is intentionally confined to procurement as an observable adoption
pathway. It does not aim to measure clinical effectiveness or algorithmic performan-
ce, but rather to characterise the distribution of investments and intended uses as
reflected in procurement records.

By combining procurement signals with an implementation-oriented interpre-
tation, the study aims to contribute evidence that is relevant to both Al governance
debates and practical decision-making in hospital management.

1.4. Contribution and structure of the paper

The article contributes to the literature by offering an empirically grounded view of
where Al-related investments are directed, thereby illustrating how clinical and admi-
nistrative trajectories may diverge in practice. It also links these patterns to the broader
discussion on Al opportunity costs, governance and evidence gaps (Ng Kok Wah, 2025,
pp- 55-56; Urbi & Tiva, 2025, p. 34; Khan et al., 2024; Gomez Rossi et al., 2022).

The paper is structured to progress from problem framing to a transparent em-
pirical assessment based on public procurement evidence. Section 1 introduces the
policy and research context for Al in hospitals, articulates the gap between clinical
prominence and organisational back-office innovation, and formulates the study aim
alongside a set of research questions that guide the remainder of the analysis.

Section 2 develops the conceptual and theoretical foundations required to inter-
pret procurement signals, including the distinction between clinical and non-clini-
cal Al domains, the related risk and value profiles, and the concept of “deployment
inequalities”. It also justifies why procurement records can be treated as a credible
proxy for real investment decisions, while acknowledging the methodological trade-
-offs inherent in this lens.

Section 3 specifies the methodological approach, including the data sources and
corpus construction, the multi-stage Al identification pipeline (from exploratory
screening to strict confirmation), and the taxonomy used to classify AI use cases.

Section 4 then reports results on the overall prevalence of confirmed Al procure-
ment, domain-level distributions, and functional profiles across clinical, patient-fa-
cing non-clinical, administrative, and research applications, which are subsequently
interpreted in the discussion (Section 5) and synthesised into concluding implica-
tions (Section 6).
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2. Conceptual and Theoretical Background

The integration of artificial intelligence (AI) into the healthcare system constitutes
one of the most consequential technological shifts in contemporary medicine. Yet
the trajectory of AI adoption reveals a persistent paradox. Clinical AI applications,
particularly in diagnostic imaging and clinical decision support, have attracted inten-
se research attention and prominent media coverage, while real-world implementa-
tion remains limited and concentrated within a narrow set of use cases. By contrast,
non-clinical and administrative AI applications, which in principle face fewer safety
and regulatory barriers, remain comparatively underexamined in the academic lite-
rature and are sparsely documented in empirical deployment studies. This chapter
establishes the conceptual and theoretical foundations needed to explain this asym-
metry. It distinguishes clinical and non-clinical AI domains, reviews frameworks for
analysing risk, value, and deployment inequalities, and outlines how public procure-
ment data can serve as a practical lens on actual investment patterns in healthcare Al

2.1. Al in Healthcare Systems: Clinical and Non-Clinical Domains

AT applications in healthcare span a wide range of functions, from patient-facing
diagnostic tools to back-end administrative systems designed to optimise organisa-
tional processes. Distinguishing these domains is essential for analysing adoption
patterns because clinical and non-clinical Al systems differ materially in risk profiles,
regulatory requirements, implementation complexity, and their potential to influen-
ce healthcare delivery.

2.1.1. Clinical AI Applications

Clinical AI refers to technologies that directly support or automate elements of clini-
cal decision-making, including diagnosis, treatment planning, prognosis, and patient
monitoring. The defining feature of clinical Al is its direct bearing on patient care
pathways and outcomes, which subjects these systems to stringent oversight and he-
ightened expectations regarding safety, effectiveness, and accountability.



From Clinical Hype to Operational Value: Assessing AI Use Cases in Polish Hospitals 71

Medical Imaging and Diagnostic Support

The most prominent domain of clinical Al research and development is medical ima-
ging, notably in radiology, pathology, and dermatology. Deep learning methods, par-
ticularly convolutional neural networks, have demonstrated strong performance in
tasks such as lesion detection, tumour classification, and quantitative image analysis
(Celietal., 2022; Horgan et al., 2019). European research activity in this area has been
extensive, with numerous proof-of-concept studies reporting high diagnostic accura-
cy under controlled conditions. AI systems for detecting diabetic retinopathy, iden-
tifying pulmonary nodules in chest radiographs, and classifying skin lesions have
at times achieved performance comparable to, or occasionally exceeding, specialist
clinicians in experimental evaluations (Wolff et al., 2021).

However, a substantial gap persists between experimental performance and
routine clinical deployment. Systematic reviews indicate that, despite impressive
sensitivity and specificity reported in academic publications, sustained large-scale
adoption across European healthcare systems remains uncommon (Popescu et al.,
2022; Wolff et al., 2021). Moving from a research prototype to a clinically embedded
tool requires more than technical validation: it also requires workflow integration,
credible evidence of clinical utility beyond accuracy metrics, and navigation of com-
plex regulatory pathways (Alami et al., 2020).

Clinical Decision Support Systems

Beyond imaging, Al-enabled clinical decision support systems (CDSS) represent
another major category of clinical applications. These systems analyse patient data,
including laboratory results, vital signs, electronic health records, and genomic in-
formation, to provide recommendations for diagnosis, treatment selection, or risk
stratification. Most contemporary CDSS are intended to augment rather than replace
clinical judgement, positioning Al as a collaborative tool supporting clinician deci-
sion-making (McKee & Wouters, 2022).

Across Europe, development and implementation trajectories remain heteroge-
neous, reflecting differences in national priorities and infrastructure. For example,
Italy’s national programme to develop an Al platform for public healthcare illustrates
efforts at coordinated implementation, emphasising semantic interoperability, data
governance, and ethical guidance as prerequisites for effective deployment (Horgan
et al., 2019). Such initiatives highlight that clinical AI adoption depends not only on
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technical capability but also on systemic readiness across organisational, regulatory,
and infrastructural dimensions.

Integrated Diagnostics and Multimodal Analysis

An emerging frontier involves integrated diagnostic systems that combine multiple
data modalities, including imaging, histopathology, laboratory results, clinical notes,
and patient-reported outcomes, to produce more comprehensive diagnostic assess-
ments. These multimodal approaches may improve diagnostic precision by levera-
ging complementary sources of information (Bukowski et al., 2020). At the same
time, they intensify challenges around interoperability, standardisation, and the vali-
dation of systems synthesising diverse information streams.

The Implementation Gap

A recurring finding in the clinical AT literature is the scale of the implementation
gap. Despite thousands of studies reporting high experimental accuracy, relatively
few systems have achieved sustained deployment in routine clinical practice within
European settings (Popescu et al., 2022; Wollft et al., 2021). Barriers include regula-
tory uncertainty, liability and accountability concerns, difficulties integrating tools
into established workflows, limited evidence of cost-effectiveness, and professional
resistance where Al is perceived as threatening autonomy or increasing workload
(Alami et al., 2020; McKee & Wouters, 2022).

In addition, clinical AI research remains concentrated in particular specialties,
notably radiology, oncology, and ophthalmology, contributing to uneven innovation
across clinical domains (Celi et al., 2022). This clustering reflects the availability of
large, well-curated datasets in image-intensive fields and the relative tractability of
bounded tasks suited to supervised learning.

2.1.2. Non-Clinical and Administrative AI Applications in Healthcare

While clinical AT dominates research attention and public discourse, non-clinical and
administrative applications constitute a substantial but underdocumented domain of
Al use in healthcare. These systems do not directly intervene in clinical decision-ma-
king; instead, they target operational, administrative, and managerial processes that
underpin service delivery.
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Operational Automation and Resource Optimisation

Non-clinical Al includes patient scheduling and appointment optimisation, resource
allocation (e.g., theatre scheduling, bed management), supply chain and inventory
optimisation, workforce planning, and epidemiological surveillance (Alami et al.,
2020). Techniques such as predictive modelling, optimisation algorithms, and na-
tural language processing (NLP) can reduce administrative burden, improve utilisa-
tion, and support more responsive operational planning.

Predictive models may forecast admission volumes to inform staffing and capa-
city decisions. NLP can extract structured information from unstructured clinical
text for billing, quality reporting, or research data extraction. Optimisation methods
can improve surgical scheduling by predicting procedure durations and reducing idle
time, thereby increasing throughput and reducing waiting lists.

Organisational and Economic Functions

Beyond day-to-day operations, non-clinical Al can influence organisational gover-
nance, cost structures, and strategic decision-making. Al-driven analytics may iden-
tify inefficiencies, reveal patterns in resource use, and inform investment priorities.
In this sense, AI functions not only as a technical tool but also as a potential lever
of organisational transformation, with implications for workforce composition, skill
requirements, and institutional governance (Alami et al., 2020).

The Evidence Gap in Non-Clinical AI Deployment

Despite its theoretical potential, empirical evidence on large-scale deployment of
administrative Al in European healthcare remains limited. The academic literature
contains relatively few detailed case studies or evaluations of Al in scheduling, bil-
ling, supply chain management, or human resources within European contexts. This
paucity contrasts sharply with the extensive body of work on clinical Al, indicating
a substantial research gap.

Several factors may contribute. First, non-clinical implementations may be per-
ceived as less scientifically novel, reducing publication incentives. Second, admini-
strative Al is often deployed by commercial vendors under proprietary arrangements,
limiting visibility and access. Third, outcomes such as cost savings, efficiency gains,
or reduced administrative burden can be diffuse and context-dependent, making at-
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tribution to a specific Al intervention more challenging than reporting discrete clini-
cal outcomes such as diagnostic accuracy.

Distinguishing Clinical from Non-Clinical Domains

Multiple taxonomies have been proposed. One common approach differentiates sys-
tems by primary function: decision support that augments clinical judgement versus
automation that executes operational or administrative processes (Shaw et al., 2019).
Another treats applications as lying on a continuum from direct patient impact (ty-
pically subject to medical device regulation) to system-level organisational interven-
tions with economic, legal, and workforce implications (Alami et al., 2020). This lat-
ter view emphasises that non-clinical AI can still shape care delivery indirectly by
restructuring organisations and influencing resource allocation.

2.2. Risk, Value, and Inequality in AI Deployment

AT adoption in healthcare is shaped not only by technical capability and organisa-
tional readiness but also by perceived risk, assessed value, and structural factors that
produce uneven access and uptake. Conceptual clarity therefore requires engagement
with frameworks that explain interactions between technology, institutions, and so-
cial contexts.

2.2.1. Risk Profiles: Clinical Versus Non-Clinical Al

Clinical and non-clinical AT entail distinct risk profiles, with implications for regula-
tion, implementation pathways, and stakeholder acceptance. In the European Union,
these profiles are increasingly shaped by a layered governance environment, combining
sectoral rules for medical devices (MDR/IVDR), horizontal data protection (GDPR),
and the risk-based obligations introduced by the EU Artificial Intelligence Act (AI Act)
(European Parliament & Council of the European Union, 2024; Aboy et al., 2024).

Clinical AI Risks

Clinical AI risks primarily relate to patient safety and clinical outcomes. Errors in
diagnostic or decision-support systems can contribute to misdiagnosis, delayed tre-
atment, or inappropriate interventions (McKee & Wouters, 2022). Concerns abo-
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ut bias further complicate risk, as systems trained on non-representative datasets
may perform unevenly across demographic groups, potentially exacerbating health
inequalities (Celi et al., 2022).

Further issues include explainability and accountability. Many high-performing
models operate as “black boxes”, limiting transparency for clinicians and patients and
complicating error detection and correction (McKee & Wouters, 2022). Questions
of legal and professional responsibility also remain contested: when AI contributes
to harm, assigning accountability among developers, institutions, and clinicians is
ethically and legally complex (Pashkov et al., 2020). Ethical analysis therefore extends
beyond technical performance to include fairness (justice), non-maleficence, and re-
spect for patient autonomy, especially where Al meaningfully influences clinical jud-
gement or patient pathways (Char et al., 2018; World Health Organization, 2021).

In the European Union, many clinical Al systems fall under medical device re-
gulation, requiring clinical validation, conformity assessment, and post-market
surveillance. The MDR and IVDR impose substantial compliance burdens on de-
velopers and deploying organisations (McKee & Wouters, 2022). The Al Act adds
a complementary, horizontal layer: many healthcare Al systems are treated as high-
-risk, triggering lifecycle obligations such as a continuous risk management system,
data governance requirements, technical documentation, record-keeping (including
logging), transparency to deployers, human oversight, and requirements on accura-
cy, robustness, and cybersecurity (European Parliament & Council of the European
Union, 2024; European Commission, n.d.-a, n.d.-b). In practice, this pushes clini-
cal AI governance towards more explicit “assurance” work: documenting intended
purpose and limitations, monitoring performance drift, and ensuring that human
oversight is operationally meaningful rather than nominal (Aboy et al., 2024; van
Kolfschooten & van Oirschot, 2024).

Non-Clinical AI Risks

Non-clinical systems entail a different constellation of risks, centred on privacy, data
governance, organisational disruption, and economic implications. Administrative
AT often processes sensitive personal data, including identifiers, financial informa-
tion, and workforce records, raising concerns about security, unauthorised access,
and compliance with GDPR (Alami et al., 2020). Even where non-clinical systems
do not directly affect diagnosis or treatment, they can shape patients’ experiences
and institutional practices through prioritisation, resource allocation, and process



76 Piotr Markowski, Anna Kowalczyk, Hubert Lazarczyk, Tomasz Berdyga

automation, which introduces ethically salient risks related to fairness, transparency;,
and the distribution of burdens and benefits across patient groups and staft (World
Health Organization, 2021).

Organisational risks include workforce displacement, deskilling, and disruption
to established workflows. Poorly designed systems may introduce bottlenecks or
unintended consequences that degrade performance (Shaw et al., 2019). Economic
risks include misallocation of resources, overinvestment in technologies that do not
deliver expected returns, and vendor lock-in that constrains future flexibility. Com-
pared with direct patient harm, these impacts can be more diffuse and harder to
quantify (Alami et al., 2020). From an AI Act perspective, many non-clinical tools
may fall outside the strictest “high-risk” category; however, where systems are high-
-risk in context of use, deployers may face additional governance duties, including
a fundamental rights impact assessment for certain deployers and settings (European
Commission, n.d.-¢; van Kolfschooten & van Oirschot, 2024). This reinforces the
ethical need to treat “back-office” AI not as value-neutral infrastructure, but as socio-
technical systems with real distributional consequences.

2.2.2. Comparative Framework: Clinical Versus Non-Clinical AI

Comparative evaluation requires frameworks extending beyond technical perfor-
mance metrics to include organisational, economic, ethical, and social dimensions.

Health Technology Assessment Approaches

Health Technology Assessment (HTA) offers a multidimensional framework encom-
passing clinical effectiveness, safety, cost-effectiveness, ethical implications, organisa-
tional impact, and social consequences (Alami et al., 2020; Leo et al., 2022). HTA has
increasingly been applied to Al reflecting the view that accuracy metrics alone are
insufficient: workflow integration, user acceptance, and system-level effects are often
decisive for value (Alami et al., 2020).

HTA highlights key differences between domains. Clinical AI evaluation prioritises
efficacy, safety, and evidence of benefit for patient outcomes, often requiring robust
trials or high-quality observational studies. Non-clinical evaluation emphasises ope-
rational indicators such as efficiency, throughput, cost savings, and user satisfaction,
which are typically more heterogeneous and context-dependent (Leo et al., 2022).
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Implementation Science Frameworks

Implementation science frameworks, including NASSS (Non-adoption, Abandon-
ment, Scale-up, Spread, and Sustainability), structure analysis of barriers and facili-
tators in complex healthcare settings (Shaw et al., 2019). NASSS examines the con-
dition, the technology, the value proposition, the adopter system, the organisation,
the wider institutional context, and adaptation over time.

Applied comparatively, clinical AI often exhibits high complexity in regulatory
compliance, clinical validation, and professional acceptance, reflecting the high-stakes
nature of clinical decision-making. Non-clinical AI may face greater complexity in or-
ganisational integration, workflow redesign, and change management because admini-
strative processes cut across departments and stakeholder groups (Shaw et al., 2019).

Operational Versus Systemic Adoption

Some frameworks distinguish operational adoption, local uptake within a setting,
from systemic adoption, sustained scaled deployment supported by governance,
funding, and policy (Li, 2022). This distinction is particularly relevant in compa-
ring clinical and non-clinical Al Clinical AI frequently requires systemic conditions
such as regulatory approval, guideline integration, reimbursement mechanisms, and
training. Non-clinical AI may be adopted operationally more readily via managerial
decisions, given lower regulatory and safety barriers (Alami et al., 2020).

2.2.3. The Concept of Deployment Inequalities

Deployment inequality refers to systematic disparities in the availability, adoption,
and quality of AI technologies across populations, institutions, and regions. Such
inequalities can emerge through multiple mechanisms and carry implications for the
distribution of AI’s benefits and burdens.

Geographical and Institutional Disparities

Research activity is geographically concentrated, with a large share of datasets, publica-
tions, and commercial developments originating from the United States and China (Celi
et al., 2022). Within Europe, adoption patterns are heterogeneous, shaped by healthca-
re system structures, digital infrastructure maturity, funding, and regulatory environ-
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ments (Bukowski et al., 2020). Countries with advanced digital health ecosystems and
strong data governance, such as Nordic states, Germany, and the Netherlands, may be
better positioned for adoption than those with less developed infrastructures.

Institutional disparities reinforce these patterns. Large academic medical centres
and private hospitals may have greater capacity to invest in Al recruit specialist staff,
and manage regulatory requirements than smaller, resource-constrained public ho-
spitals or rural facilities (Horgan et al., 2019). This risks creating a two-tier system
where Al-enabled services cluster in well-resourced settings.

Technological Readiness and Digital Maturity

Deployment inequalities are also mediated by digital maturity, including EHR capa-
bility, interoperability, IT infrastructure, and workforce digital literacy (Bukowski et
al., 2020). AT adoption typically presupposes standardised data formats, secure data
storage and transfer, and adequate computational resources. Institutions lacking the-
se prerequisites face substantial structural barriers regardless of the availability of AI
solutions (Horgan et al., 2019).

The Polish healthcare system illustrates these constraints. While Poland has
advanced digitisation initiatives, interoperability remains limited, data quality varies,
and many providers, especially in rural or underserved areas, lack technical infra-
structure and workforce capacity needed for advanced Al implementation (Bukowski
et al., 2020). These conditions may widen disparities between well-resourced urban
centres and peripheral regions.

Socioeconomic Dimensions of Access

Budget constraints and uncertain returns can limit adoption in public systems, par-
ticularly where upfront costs are high and benefits accrue over longer horizons.
Reimbursement structures that do not recognise Al-enabled services may further
discourage adoption (Alami et al., 2020). Workforce capacity is another critical deter-
minant: Al deployment requires specialised human capital, including data scientists,
informaticians, and clinicians with AT literacy. Shortages of such professionals can
amplify inequality, particularly in resource-limited settings (Horgan et al., 2019).
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The Hype-Implementation Gap as a Deployment Inequality

A further form of deployment inequality concerns the mismatch between the visibili-
ty of clinical AI and the limited extent of routine implementation. Clinical AI attracts
disproportionate attention and investment despite persistent barriers, while non-c-
linical AI, which may be easier to deploy from a regulatory and safety perspective,
remains underexplored (Popescu et al., 2022; Wolff et al., 2021). This suggests that
deployment patterns are shaped not only by feasibility or value but also by prestige,
funding incentives, and commercial dynamics. Explaining this asymmetry requires
attention to institutional and cultural drivers alongside technical evaluation.

2.3. Public Procurement as a Window on AI Adoption

Public procurement is an underutilised yet potentially informative source of eviden-
ce on real-world Al investment decisions. Unlike research publications that reflect
proof-of-concept studies, procurement records document purchasing decisions by
healthcare institutions and thus reflect concrete financial commitments and organi-
sational priorities.

2.3.1. Why Procurement Data Reflect Real Investment Decisions

Procurement records offer several advantages as indicators of adoption. First, they
capture actual transactions and budget allocations, providing objective evidence of
institutional commitment rather than aspirational or self-reported adoption (Bukow-
ski et al., 2020). Second, public procurement is typically governed by transparency
and competitive tendering rules that generate structured data on contract values,
suppliers, and contracting authorities. In the European Union, above-threshold pro-
curements are commonly published through standardised platforms such as Tenders
Electronic Daily (TED), enabling comparative analysis.

Third, procurement datasets facilitate longitudinal analysis, allowing researchers
to track trends, identify emerging technologies, and examine diffusion across regions
and institution types. Such analysis can reveal disparities in investment and the evo-
lution of priorities over time.
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2.3.2. Completeness and Formalisation of Procurement Records

The research utility of procurement data depends on the detail and standardisa-
tion of records. Well-functioning e-procurement systems typically provide fields
for contracting authority, contract value, contract type, Common Procurement
Vocabulary (CPV) codes, and a brief description of the procurement subject
(Bukowski et al., 2020).

However, detail varies substantially. Some notices only indicate broad categories
(e.g., “IT services” or “medical equipment”) without identifying whether AI com-
ponents are included. Richer information often appears in technical specifications,
frequently provided in separate tender documents, such as the “Detailed description
of the Subject of Procurement”. These materials are crucial for distinguishing Al-re-
lated purchases from conventional IT procurement and for classifying procurements
by clinical versus non-clinical domain.

2.3.3. Traceability of Decision Pathways

Procurement records can also support analysis of decision pathways by linking pur-
chasing choices to institutional characteristics, policy contexts, and external drivers
such as dedicated funding programmes or regulatory changes. By examining which
institutions procure Al systems, researchers can assess associations with size, owner-
ship, geography, teaching status, or specialisation (Bukowski et al., 2020).

Procurement data may also be linked with other datasets, including performan-
ce indicators or workforce information, to investigate organisational impacts. While
such linkage does not guarantee causal inference, it can support quasi-experimental
strategies and more robust evaluation designs.

2.3.4. Examples of Procurement-Based AI Adoption Research in Europe

Despite its promise, procurement-based research on healthcare Al adoption in Euro-
pe remains limited. Systematic searches indicate relatively few studies that treat pu-
blic procurement as a primary data source for assessing investment patterns, deploy-
ment inequalities, or diffusion dynamics. This scarcity is notable given the increasing
availability of e-procurement platforms and open data initiatives.

Potential explanations include the burden of collecting full tender documentation
(often decentralised or access-restricted), the need for extensive cleaning and classifi-
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cation, and the interdisciplinary expertise required to interpret procurement data ap-
propriately, spanning health services research, public administration, and data science.

2.3.5. Advantages and Limitations of Procurement Data

Procurement data provide objective, transaction-level evidence and can offer broad
coverage of public-sector purchases across clinical and non-clinical applications, inc-
luding hardware, software, and services. They enable longitudinal analysis and can
support examination of diffusion patterns and disparities.

However, important limitations apply. Procurement records typically exclude pri-
vate-sector purchases, in-house developments, and research-funded pilots, potentially
underestimating overall AT adoption. The granularity and completeness of notices vary
across jurisdictions and time. Identifying Al-related procurements within large data-
sets often requires domain expertise and sophisticated text analysis because AI may be
embedded within broader systems or described using inconsistent terminology.

A further limitation concerns access to detailed documents. While summary
notices are public, full technical specifications are frequently absent from central re-
positories and may require formal requests to contracting authorities or navigation of
decentralised repositories. This raises collection burdens, constrains scalability, and
may introduce selection bias if only easily accessible procurements are analysed.
Finally, procurement data primarily capture inputs (investment decisions) rather
than outcomes (performance) or impacts (health outcomes, efficiency, equity). Ac-
cordingly, procurement analysis should ideally be complemented by methods such as
case studies, surveys, or linkage to performance data.

Despite these constraints, procurement data remain a valuable and underused re-
source for understanding Al deployment in healthcare. The present study addresses
this gap by analysing public procurement records from the Polish healthcare system
to characterise Al investment patterns, compare clinical and non-clinical adoption,
and examine deployment inequalities across institutions and regions. By grounding
analysis in procurement decisions, the study aims to move beyond clinical AI hype
towards documented patterns of institutional prioritisation and the structural factors
shaping equitable AI deployment.
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3. Methodology

3.1. Study design and analytical approach

This study adopts a multi-stage, procurement-based analytical design to examine the
distribution and functional profile of artificial intelligence (AI) use cases in the Polish
healthcare system. Public procurement notices are used as an empirical proxy for
organisational adoption intent, reflecting concrete investment decisions rather than
aspirational strategies or pilot declarations.

The methodological framework is explicitly conservative and filtration-oriented.
Its primary objective is to minimise false-positive identification of Al systems by pro-
gressively narrowing the dataset through increasingly stringent analytical stages. Al
identification is therefore treated not as a single classification task, but as a sequential
verification pipeline, combining large language model (LLM) screening with docu-
ment-level validation and expert oversight.

The analysis focuses on intended functionality as specified in procurement docu-
mentation. It does not attempt to assess post-procurement implementation success,
clinical effectiveness, or real-world performance of Al systems.

3.2. Data sources and corpus construction

The initial dataset comprised all healthcare-related procurement notices published
between 1 January 2022 and 31 December 2024 in two official repositories:

o the Polish Public Procurement Bulletin (BZP), and

o the EU Tenders Electronic Daily (TED) database.

The combined corpus included 85,501 procurement notices, covering supplies,
services, and works procured by public healthcare providers at national, regional,
and local levels. Notices were retrieved together with associated metadata (title, de-
scription, CPV codes, contracting authority, procedure identifiers) and, where ava-
ilable, full Terms of Reference (TOR) documentation, including technical specifica-
tions and functional requirements.

Polish Public Procurement Bulletin (BZP)

1. Scope: national and below-EU-threshold public procurement procedures in Poland.
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2. Format: XML documents retrieved via the ezamowienia.gov.pl export functions.

3. Fields used: notice title (title), short description (short_description), notice con-
tent (content), main and additional CPV codes (cpv_main, cpv_additional), type
of contracting authority, date of publication.

EU Tenders Electronic Daily (TED).

. Scope: above-threshold public procurement procedures in the European Union.
2. Format: XML files compliant with TED standards.
3. Fields used: analogous to BZP, including title, short_description, content, CPV
codes, type of contracting authority, date of publication.

In total, 85,501 notices were harvested from both sources (49,281 from BZP and
36,220 from TED). A multi-step sampling and classification procedure was then ap-
plied to identify and code notices related to AI/ML.

Sampling strategy and inclusion criteria

The sampling strategy was designed to approximate, as closely as possible, the universe
of Al-related procurements in the Polish healthcare sector in the period 2023-2025.

BZP sample: hospitals and national health institutes

For BZP, inclusion criteria were defined to capture hospital-type entities and key na-

tional institutes providing healthcare services or performing national health func-

tions. The following filters were applied:

1. Type of notice - Only “contract notice” records were included (initial procure-
ment announcements), excluding e.g. contract award notices.

2. Timeframe - Date of publication between 1 January 2023 and 10 December
2025 (inclusive).

3. Type of contracting authority

Two complementary filters were used to capture the relevant group of entities:
« notices where the contracting authority was classified as a “Samodzielny pu-
bliczny zaktad opieki zdrowotne;j” (independent public healthcare provider);
« notices where the contracting authority was a “Zamawiajacy publiczny” (pu-
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blic contracting authority) and the name of the institution contained at least

one of the following keywords or matched one of the explicitly listed national

institutes:

- keyword filters (substring match in the contracting authority’s name):
»szpital” (hospital), ,Opieki Zdrowotnej” (healthcare), ,ZOZ” (heal-
thcare institution), ,,lecznictwa” (treatment / medical care);

explicitly included national institutes and medical research centres:

- Panstwowy Instytut Medyczny

- Instytut Gruzlicy i Choréb Pluc

- Narodowy Instytut Zdrowia Publicznego PZH

- Narodowy Instytut Kardiologii

- Narodowy Instytut Geriatrii

- Narodowy Instytut Onkologii

- Instytut Psychiatrii i Neurologii

- Wojskowy Instytut Medyczny

- Wojskowy Instytut Medycyny Lotniczej

- Instytut ,Centrum Zdrowia Matki Polki”

- Instytut Pomnik-Centrum Zdrowia Dziecka

- Instytut Fizjologii i Patologii Stuchu

- Instytut Matki i Dziecka

- Instytut Immunologii i Terapii Do$wiadczalne;j.

These criteria produced a BZP sub-sample corresponding to hospitals and national

health institutes that are likely to engage in clinically or organisationally significant

AT deployments.

TED sample: health sector procurement in Poland

For TED, sampling was performed using the platform’s structured search fields, with

the following parameters:

Scope of search: all notices.

Type of notice:

- “Contract notice - simplified procedure’, or

- “Contract notice” or “Concession notice — standard procedure”
Main CPYV classification: all CPV classification

Nature of contract: Supplies or services.
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o Place of performance: Poland.
o Publication date: between 1 January 2023 and 10 December 2025.
o Sector of activity of the contracting authority: health.

In the exported dataset, a substantial number of records did not correspond to di-
stinct procurement procedures. Specifically, the raw export included 10,644 notices
relating solely to modifications or changes to previously published procedures, as
well as 52 duplicate procedures resulting from repeated publication across stages or
notice types. These records were programmatically identified and removed during
the Documentation collection and aggregation stage, described later in the metho-
dology. This cleaning step was necessary to avoid artificial inflation of procurement
counts and to ensure that each observation in the final dataset represented a unique
procurement procedure rather than an administrative update or repetition.

The resulting TED sub-sample includes above-threshold procurement procedures
launched by Polish health-sector contracting authorities in Al-relevant CPV categories.

Both sub-samples (BZP and TED) were then pooled into a single analytical data-
set representing procurement activity by the Polish healthcare sector. Subsequent Al
identification and categorisation were applied uniformly across the combined dataset.

3.3. Multi-stage Al identification pipeline

3.3.1. Stage 1 - Exploratory screening (Al potential)

In the first stage, all procurement notices were subjected to exploratory semantic
screening to identify potential relevance to Al This stage was designed for high recall
and intentionally permissive classification.

Screening was performed using GPT-4.5, instructed to classify notices as:

e Al Potential = Yes, or

« Al Potential = No,
based on explicit or implicit references to Al-related concepts, including (but not li-
mited to): artificial intelligence, machine learning, neural networks, predictive analy-
tics, intelligent automation, or adaptive algorithms.

At this stage, no attempt was made to verify whether AI functionality was ge-
nuinely required or technically specified.
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3.3.2. Stage 2 - Indicative analysis (Al likeness)

Notices flagged as AI potential underwent indicative analysis, again using GPT-4.5,
but with stricter criteria. Each notice was assigned one of four Al likeness levels:

o Certain - Al explicitly stated as a required component,

« High probability — Al strongly implied through functional descriptions,

o Low probability - Al mentioned ambiguously or as an optional feature,

o Unlikely - Al references judged superficial or marketing-oriented.

This stage served to prioritise records for document-level verification, while retaining
borderline cases for transparency and auditability.

3.3.3. Extended analysis set construction

Procurement notices classified as certain, high probability, or low probability were re-
tained for extended analysis. Notices classified as unlikely were excluded from further
processing but preserved in the dataset for methodological traceability.

At this stage, 842 notices were retained across both repositories.

3.4. Documentation collection and aggregation

3.4.1. TOR acquisition

For each notice in the extended analysis set, the availability of Terms of Reference
(TOR) or equivalent technical documentation was verified. Notices lacking accessi-
ble TOR documentation were excluded from confirmatory analysis, as Al functiona-
lity could not be validated at the specification level.

3.4.2. Aggregation of multi-lot procedures

Procurement procedures comprising multiple lots or repeated technical descriptions
were aggregated into single analytical records, provided that Al functionality was
consistent across lots. Aggregation was performed to avoid artificial inflation of Al
adoption counts due to procedural fragmentation.
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3.5. Stage 3 - Criteria-based assessment (AI confirmation)

3.5.1. TOR-level verification

Aggregated records with available TOR documentation were subjected to criteria-

-based assessment using GPT-5, operating under a strictly defined prompt requiring:

o explicit description of AI or machine learning methods,

o Al-driven functionality embedded in system logic (not optional add-ons), and

« operational relevance beyond generic automation or rule-based systems.

Each record was classified as:
e Al certain = Yes, or
e« Al certain = No.

Records failing to meet all criteria were excluded from the confirmed Al dataset.

TED & BzP data collection

Al BZP notices

49,281
(stage 1 exploratory screening (A1 potential) ) $
k,m/ \
¥
Rejected Al Potential
2 10,800
(stage 2 - mdicative amalysis (ar likeness) ) /'/ \N
Unlikely Certain | High prbability

10,520 10 19

St

280
v
M\?"\Q \
55 225
(= s ; T ) ¢

Confirmed Al TOR

54

Figure 1. Multi-stage AI identification pipeline diagram

Low probability

251

TOTAL CONFIRMED Al TOR

AlITED notices

36,220
+
v
11,667 10,696
v/v/ RS
i High probability (e el Uniikely
52 87 423 11,105
{
o
562
{
- 5
Aggregated No TOR
483 79
+
156

210



88 Piotr Markowski, Anna Kowalczyk, Hubert Lazarczyk, Tomasz Berdyga

3.5.2. Stage 4 - Strict confirmatory evaluation and expert revision

In the final stage, all records classified as AI certain = Yes were subjected to strict
confirmatory evaluation, combining:

o GPT-5.2 analysis at category level, and

« manual expert review for ambiguous, high-impact, or borderline cases.
Expert revision focused on preventing misclassification of:

o conventional IT systems marketed as “intelligent”,

« rule-based automation lacking learning capability, and

« infrastructure-only procurements without AT logic.
Only records surviving this final verification were included in the confirmed Al pro-
curement dataset.

3.6. Taxonomy of AI application domains

Confirmed AI records were classified using a two-level functional taxonomy de-
rived from the functional intent explicitly specified in Terms of Reference (TOR)
documentation.

Level 1: Main application domains

At the first level, each confirmed Al procurement was assigned to one of four mutu-
ally exclusive domains, reflecting its dominant functional intent:

o Clinical applications - systems directly supporting diagnosis, treatment,
monitoring, or clinical decision-making.

« Non-clinical patient services — Al supporting patient interaction, naviga-
tion, registration, or communication without direct clinical decision impact.

o Non-clinical administrative processes — Al applied to back-office, manage-
rial, logistical, governance, or IT operational functions.

« Research and scientific applications — Al systems primarily supporting re-
search activities, analytics, data preparation, and research-related data go-
vernance.

Where a procurement spanned more than one domain, Level 1 assignment followed
the primary intended use stated in the TOR, rather than optional or ancillary func-
tionalities.
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Level 2: Detailed functional categories

At the second level, procurements could be assigned to one or more detailed func-
tional categories within the Level 1 domain(s), capturing specific Al use cases (e.g.,
imaging-related AI, document automation, anonymisation workflows, predictive
modelling). Detailed categories were applied only when explicitly supported by TOR
evidence, and were not treated as mutually exclusive, allowing multiple category as-
signments where justified.

The definitions, scope, and interpretative guidance for all detailed categories,
including their intended meaning and boundary cases, are provided in Appendix
A (Detailed taxonomy). This appendix also documents the operational rules used to
ensure consistent category assignment across the corpus.

3.7. Analytical strategy

The analytical strategy adopted in this study is descriptive and comparative, with the

primary objective of mapping the structural patterns of Al-related procurement in

the healthcare sector rather than testing causal hypotheses or estimating effect sizes.
The analysis focuses on three core dimensions:

1. Prevalence of confirmed Al procurement, measured as the proportion of pro-
curement procedures containing explicitly specified Al functionality relative to
the total volume of healthcare procurement notices.

2. Distribution of AI use cases across application domains, capturing how con-
firmed AI procurements are allocated between clinical applications, non-clinical
patient services, administrative processes, and research and scientific activities.

3. Functional concentration within and between domains, assessed through de-
tailed category-level classification to identify dominant, marginal, and absent AI
use cases across organisational functions.

Results are reported using absolute counts and proportional shares, complemented

by structured visualisations (e.g. radar charts) to illustrate internal functional pro-

files. No inferential statistical techniques were applied, as the study does not aim to
establish statistical associations, causal relationships, or predictive models.
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Analytical scope and exclusions

The unit of analysis in this study is the procurement procedure as an expression of or-
ganisational intent, rather than its contractual or economic outcome. Consequently,
several procurement attributes were intentionally excluded from the analytical scope.

First, the analysis does not consider the final status of procurement procedures,
such as whether a procedure was awarded, annulled, or cancelled. From an analytical
perspective, these outcomes are not essential to the study’s objective, which is to cap-
ture interest in and intended deployment of Al systems, as articulated at the stage of
formal procurement documentation.

Second, the study does not analyse the number of bidders, competitive intensity,
or awarded contract values. While economically relevant, these variables primarily
reflect market structure and pricing dynamics, rather than organisational adoption
priorities or functional expectations associated with AI use. Including them would
shift the focus from deployment intent to procurement performance, which lies out-
side the scope of this analysis.

Third, the analysis does not differentiate between procurement procedures based
on funding source, contract duration, or supplier characteristics. The emphasis rema-
ins on the functional specification of Al systems rather than procurement modality.

Temporal considerations and contextual exclusions

The study period coincides with a phase of heightened public and institutional atten-
tion to artificial intelligence, particularly during the last three years of the analysed
timeframe. This period is characterised by intensified policy discourse, strategic road-
maps, and media narratives promoting Al as a transformative technology in healthcare.

However, the analytical approach deliberately avoids trend extrapolation or tem-
poral causality claims. The study does not seek to measure growth rates, year-on-y-
ear change, or the direct impact of Al-related policy initiatives. Instead, it treats the
analysed period as a contextual backdrop against which procurement behaviour is
observed, focusing on structural allocation patterns rather than temporal dynamics.

As a result, fluctuations potentially attributable to short-term “Al hype”, policy
announcements, or vendor-driven marketing cycles are not isolated or modelled. The
analysis prioritises stable functional patterns emerging from confirmed procurement
specifications, rather than transient signals.
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4. Results

4.1. Overall prevalence of Al-related procurement in the
healthcare sector

The analysis covered a total of 85,501 healthcare-related public procurement noti-
ces published between 2022 and 2024 across the Polish Public Procurement Bulletin
(BZP) and the EU Tenders Electronic Daily (TED). Following the multi-stage identi-
fication and verification pipeline described in Section 3, 210 procurement procedures
were confirmed as containing explicit and verifiable Al functionality at the level of
Terms of Reference.

In relative terms, confirmed Al procurements represent approximately 0.25% of
all analysed healthcare procurement notices. This proportion remains marginal de-
spite extensive policy attention, funding initiatives, and public discourse positioning
artificial intelligence as a strategic driver of healthcare system modernisation.

The sharp reduction from initial “AI potential” signals to confirmed AI cases illu-
strates the importance of TOR-level verification. A substantial share of procurement
notices initially flagged as Al-related did not specify Al functionality in a manner
sufficient to meet confirmatory criteria, underscoring the gap between Al-related
rhetoric and formal procurement requirements.

Overall, the findings indicate that AI adoption, as reflected in public procure-
ment decisions, remains selective, limited in scale, and highly concentrated, rather
than widespread or systemic.

4.2. Distribution of AI use cases across main domains

Table 2 presents the distribution of unique confirmed Al procurement records across
four main application domains: clinical applications, non-clinical patient services, admi-
nistrative processes, and research and scientific applications. The table reports both cove-
rage (the proportion of analysed records in which a given domain appears) and share of
total records, reflecting the dominant classification assigned to each procurement.
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Table 1. Distribution of confirmed AI procurements by application domain

Domain Unique Records | Coverage (%) Share of Total
Clinical Applications 124 79% 64.2%
Non-clinical Patient Services 13 8.3% 6.7%
Administrative Processes 29 18.5% 15%
Research & Scientific 27 17.2% 14%
Total 157 100% —

Clinical applications clearly dominate the confirmed AI procurement landscape. 124
records (79% coverage) involved clinical Al functionalities, accounting for 64.2% of
all confirmed AI procurements. This dominance reflects a strong institutional fo-
cus on patient-facing, clinically embedded AI systems, including diagnostic support,
medical imaging, and Al-assisted clinical documentation. The high coverage value
indicates that clinical AI frequently co-occurs with other Al functionalities within
the same procurement procedures.

In contrast, non-clinical patient services represent the smallest segment of the dataset.
Only 13 records (8.3% coverage) were classified in this domain, corresponding to 6.7% of
the total confirmed AI procurements. These systems primarily address patient registra-
tion, navigation, and communication. Despite their comparatively low clinical risk and
limited regulatory burden, such applications remain marginal in procurement practice.

Al applied to administrative processes constitutes a more substantial, though still
secondary, category. Twenty-nine records (18.5% coverage) were classified as admi-
nistrative Al, representing 15% of the total dataset. Typical use cases include docu-
ment workflow automation, intelligent document processing (OCR/IDP), reporting
and compliance support, and Al-assisted IT operations. The divergence between co-
verage and share suggests that administrative Al is often embedded within broader
procurement initiatives rather than procured as a standalone strategic investment.

Finally, research and scientific applications account for 27 records (17.2% covera-
ge) and 14% of total confirmed AI procurements. This category includes Al systems
supporting clinical research, data harmonisation, predictive modelling, and advan-
ced analytics. Compared with administrative Al, research-oriented procurements
display a more balanced relationship between coverage and share, indicating more
focused and purpose-specific acquisition patterns.

Taken together, the distribution reveals a pronounced structural imbalance in AI procu-
rement priorities, with clinical applications strongly prioritised over non-clinical domains.
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4.3. Functional profile of clinical and non-clinical AI

Beyond the high-level domain distribution presented in Section 4.2, a category-le-
vel analysis reveals substantial differences in the internal functional structure of Al
procurements across the four main application groups: clinical applications, non-c-
linical patient services, non-clinical administrative processes, and scientific research
applications. This section reports descriptive results only, based strictly on confirmed
categories and their proportional shares.

4.3.1. Clinical applications

Clinical AI exhibits a highly concentrated functional profile, dominated by image-
-based and diagnostic use cases. As shown in Figure 2, the radar chart for clinical
applications is characterised by a single dominant axis corresponding to Imaging and
auxiliary diagnostic studies.

Clinical Applications - Detailed Categories Radar Chart

[ Confirmed

Al-assisted Diagnostics
[

Other Clinical Real-time Patient Monitoring
105
Personalized Medicine L Asynchronous Monitoring
2
PACS/VNA Management 1 Medical Imaging Analysis
Quality Control Clinical Decision Support
Procedure Support Triage & Risk Stratification
Documentation Assistance Treatment Planning

Communication & Navigation

Figure 2. Clinical applications - detailed categories radar chart (confirmed Al cases)
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The most prevalent category is Imaging and auxiliary diagnostic studies, with 105
confirmed cases, accounting for 49.5% of all confirmations. This single category re-
presents nearly half of all confirmed Al deployments, indicating a strong concentra-
tion of procurement activity in radiology and related diagnostic domains.

Secondary categories include Diagnostics (14.2%), PACS/VNA Al-based image data
management (12.3%), and Clinical decision support (9%). Monitoring-related applica-
tions are present at lower levels, with Live monitoring (5.7%) and Asynchronous mo-
nitoring (1.9%). Advanced clinical use cases such as Personalised medicine and omics
analysis (1.4%) and Intraoperative support and navigation (1.9%) remain marginal.

Overall, the clinical Al profile reflects a narrow, image-centric adoption pattern,
with limited representation of therapy optimisation, communication support, or sys-
tem-wide clinical intelligence.

Table 2. Clinical AI - detailed category statistics

Category Group Confirmed | % confirmations

Imaging and auxiliary diagnostic studies Clinical 105 49.5%
Diagnostics Clinical 30 14.2%
PACS/VNA Al image data management Clinical 26 12.3%
Clinical decision support Clinical 19 9%

Triage and risk stratification Clinical 17 8%

Quality control and error detection Clinical 15 7.1%
Clinical documentation assistance Clinical 14 6.6%
Live monitoring Clinical 12 5.7%
Treatment planning and optimisation Clinical 10 4.7%
Asynchronous monitoring Clinical 4 1.9%
Intraoperative support and navigation Clinical 4 1.9%
Personalised medicine and omics analysis Clinical 3 1.4%
Clinical communication and patient navigation Clinical 1 0.5%
Other clinical (unspecified) Clinical 1 0.5%
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4.3.2. Non-clinical patient services

Non-clinical patient-facing Al represents the smallest and least diversified functional
group. The radar chart for this domain shows a sharply polarised structure focused
almost exclusively on omnichannel communication tools.

Non-clinical Patient Services - Detailed Categories Radar Chart
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Patient Registration

Other Patient Services Patient Flow Management

Omnichannel Services

Figure 3. Non-clinical patient services - detailed categories radar chart (confirmed AlI cases)

The dominant category is Omnichannel patient services, with 10 confirmed cases
representing 4.7% of all confirmations. Patient registration systems appear in 6 cases
(2.8%), while Patient flow management and other patient-service categories show no
confirmed AI deployments.

This distribution indicates that Al in patient services is primarily used to mediate
communication channels, rather than to support patient logistics, flow optimisation,
or service coordination.
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Table 3. Non-clinical patient services - detailed category statistics

Category Group Confirmed | % confirmations
Omnichannel patient services | Non-clinical patient services 10 4.7%
Patient registration Non-clinical patient services 6 2.8%
Patient flow management Non-clinical patient services 0 0%

Other patient services (un- Non-clinical patient services 0 0%
specified)

4.3.3. Non-clinical administrative processes

Non-clinical administrative Al displays the widest functional dispersion among all
analysed groups. The corresponding radar chart shows multiple moderate peaks

rather than a single dominant category.

Non-clinical Administrative Processes - Detailed Categories Radar Ghart
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Figure 4. Non-clinical administrative processes - detailed categories radar chart (confirmed AlI cases)
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The most prominent category is IT infrastructure maintenance and Al-supported se-
curity, with 19 confirmed cases, accounting for 9% of all confirmations. Other recu-
rring categories include AI/MLOps platforms and model operationalisation (3.8%),
Governance, audit and AI monitoring (2.8%), Live administrative monitoring (2.8%),
and IDP/OCR-based document data extraction (2.4%).

In contrast, categories associated with strategic management and organisational
decision support—such as cost analysis, resource planning, or billing and coding—
are either marginal (<1.4%) or absent. This suggests that administrative Al is predo-
minantly deployed as technical and infrastructural support, rather than as a tool for
managerial analytics.

Table 4. Non-clinical administrative processes - detailed category statistics

Category Group Confirmed | % confirmations
IT infrastructure maintenance / | Non-clinical administrative 19 9%
Al security
AI/MLOps platforms and model | Non-clinical administrative 8 3.8%
operationalisation
Governance, audit and Al Non-clinical administrative 6 2.8%
monitoring
Live monitoring (administrative) | Non-clinical administrative 6 2.8%
IDP/OCR document data Non-clinical administrative 5 2.4%
extraction
Document workflow and Non-clinical administrative 4 1.9%
correspondence
Cost analysis and decision Non-clinical administrative 3 1.4%
support
Logistics and inventory Non-clinical administrative 2 0.9%
management
Data quality and metadata Non-clinical administrative 2 0.9%
management
Resource planning Non-clinical administrative 1 0.5%
Billing and coding Non-clinical administrative 1 0.5%
IT service desk support Non-clinical administrative 1 0.5%
Image processing (administrative) | Non-clinical administrative 1 0.5%
Other administrative Non-clinical administrative 1 0.5%
(unspecified)
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4.3.4. Scientific and research applications

Scientific Al applications show a moderately diversified profile, with a strong empha-
sis on data governance, compliance, and research infrastructure rather than experi-
mental clinical AL

Scientific Research - Detailed Categories Radar Chart
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Figure 5. Scientific and research applications - detailed categories radar chart (confirmed Al cases)

The largest category is Anonymisation, pseudonymisation and secure data sharing,
with 15 confirmed cases (7.1%), reflecting the regulatory requirements associated
with secondary use of health data. Other relevant categories include Predictive mo-
delling (4.7%), Dataset building and annotation (3.3%), LLM-based research as-
sistants (2.8%), and NLP and text mining (2.8%).

This profile indicates that Al in the scientific domain is primarily deployed as
enabling infrastructure for compliant research workflows, rather than as a direct dri-
ver of Al-led discovery.
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Table 5. Scientific and research applications - detailed category statistics

Category Group Confirmed % confirmations
Anonymisation / pseudonymisation and | Scientific 15 7.1%
secure sharing
Predictive modelling Scientific 10 4.7%
Dataset building and annotation Scientific 7 3.3%
LLM research assistants Scientific 6 2.8%
NLP and text mining Scientific 6 2.8%
Model management and reuse Scientific 5 2.4%
Scientific data analysis Scientific 3 1.4%
Data preparation and ETL Scientific 3 1.4%
Clinical research support Scientific 1 0.5%
Other scientific (unspecified) Scientific 0 0%

5. Discussion

The central finding emerging from the analysis of public procurement is a marked
disproportion in implementation priorities favouring clinical applications at the expen-
se of administrative innovation. Clinical applications accounted for 64.2% of all confir-
med Al-related public procurements in the studied sample, whilst administrative and
operational processes represented merely 15%. This dominance confirms the thesis that
political and commercial narratives are disproportionately focused on clinical domains.

Interpreting the Imbalance Between Clinical and Non-Clinical AI

The observed disparity between clinical and non-clinical Al adoption in Polish he-
althcare procurement reveals a pattern consistent with broader international trends,
yet amplified by specific national policy mechanisms. The 64.2% concentration in cli-
nical applications, particularly the 49.5% devoted to imaging and auxiliary diagnostic
studies, mirrors the global healthcare AI landscape where radiology and diagnostic
imaging dominate research, regulatory approvals, and commercial attention (George
et al., 2023; Sathya, 2024). This alignment suggests that Polish procurement patterns
are shaped not only by local factors but also by international market dynamics and
the maturity gradient of AI technologies across different healthcare domains.
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However, the magnitude of this imbalance in Poland may have been significantly
influenced by targeted funding mechanisms, most notably the Krajowy Plan Odbu-
dowy (KPO; National Recovery Plan). Within the KPO framework, substantial re-
sources were earmarked for digital health transformation, including initiatives that
explicitly reference the implementation of certified Al tools alongside the expansion
and integration of electronic medical documentation in hospitals (Ministerstwo Fun-
duszy i Polityki Regionalnej, 2022; Ministerstwo Zdrowia, 2025). More broadly, the
KPO governance and implementation architecture underscores how eligibility cri-
teria and programme design can steer institutional priorities, even where multiple
domains compete for attention (European Parliamentary Research Service, 2022).

Notably, whilst the KPO also allocated resources for back-office functions, these
funding streams did not impose equivalent AI implementation requirements. This
asymmetry in policy design may have inadvertently reinforced the clinical-admini-
strative divide observed in procurement data. Healthcare institutions, responding
rationally to funding incentives, directed their AI investments towards domains
where both financial support and compliance expectations converged, namely, cli-
nically visible applications that can be readily framed in terms of patient benefit and
system modernisation (European Parliamentary Research Service, 2022; Minister-
stwo Zdrowia, 2025). The absence of similar AI-specific mandates for administrative
functions, despite available funding, likely contributed to the underrepresentation of
back-office Al solutions in the procurement landscape.

This funding-driven explanation is further supported by the temporal concentra-
tion of procurements within the study period (2022-2024), which coincides with the
active implementation phase of KPO-funded healthcare modernisation initiatives.
The policy architecture of the KPO thus emerges as a critical contextual factor that
may have amplified the natural tendency towards clinical Al prioritisation, creating
a structural bias in the procurement ecosystem that extends beyond purely technical
or clinical considerations (European Parliamentary Research Service, 2022; Mini-
sterstwo Funduszy i Polityki Regionalnej, 2022).

The dominance of imaging applications within the clinical domain reflects the
technological maturity and regulatory acceptance of Al in radiology. Deep learning
for image analysis, automated detection, and workflow optimisation represents the
most mature clinical Al domain, with established validation frameworks and clear
clinical utility (European Society of Radiology, 2025; Maleki Varnosfaderani & Fo-
rouzanfar, 2024). This maturity translates into lower perceived risk for procurement
officers and clinical decision-makers, creating a self-reinforcing cycle where proven
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technologies attract further investment whilst less mature applications struggle to
gain traction. The concentration of 105 cases (49.5% of all AI procurements) in ima-
ging and auxiliary diagnostic studies demonstrates how technological readiness inte-
racts with policy incentives to shape adoption patterns.

In contrast, the 15% allocation to administrative processes represents a substan-
tial underutilisation of Al potential in operational domains. The literature consisten-
tly identifies administrative and back-office applications, including patient demand
forecasting, workforce planning, scheduling, billing automation, and documentation
assistance, as high-impact, comparatively lower-risk use cases that offer clear return
on investment and face fewer regulatory hurdles than clinical applications (Cho-
wdhury Urbi & Gazi Tiva, 2025; Sachdeva & Jain, 2025). The observed procurement
patterns suggest that despite these advantages, administrative AI remains overshado-
wed by the prestige and policy attention accorded to clinical innovations. This repre-
sents a significant opportunity cost, as administrative Al can deliver efficiency gains
with shorter implementation timelines and lower validation requirements than many
clinical applications (Davenport & Glaser, 2022).

The research and scientific applications domain, accounting for 14% of procure-
ments, reveals an interesting intermediate category that bridges clinical and opera-
tional concerns. The prominence of anonymisation and pseudonymisation solutions
(7.1% of total procurements) reflects growing awareness of data governance require-
ments, particularly in anticipation of stricter regulatory frameworks. However, the
relatively modest investment in predictive modelling (4.7%) and dataset building
(3.3%) suggests that Polish healthcare institutions are still developing the infrastruc-
ture and capabilities necessary for advanced analytics and continuous learning sys-
tems (Ali et al., 2023; Esmaeilzadeh, 2024).

Implications for Healthcare AI Governance and Policy

The procurement patterns documented in this study illuminate several critical go-
vernance challenges that extend beyond the Polish context. The 0.25% prevalence of
Al-related procurements among all healthcare tenders indicates that despite conside-
rable policy rhetoric surrounding Al as a strategic priority, actual adoption remains
marginal and highly selective. This gap between discourse and implementation is
consistent with reviews that emphasise a persistent research-to-deployment chasm,
where extensive research activity translates into relatively limited routine integration
(Ali et al., 2023; Esmaeilzadeh, 2024).
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The concentration of Al investment in specific domains raises questions about the
alignment between procurement decisions and healthcare system priorities. Whilst
diagnostic imaging undoubtedly benefits from Al augmentation, the neglect of admi-
nistrative automation may perpetuate operational inefficiencies that ultimately con-
strain clinical capacity. The literature emphasises that administrative Al applications
often offer clearer operational business cases than many clinical applications, yet they
may suffer from lower visibility and prestige within institutional innovation narratives
(Davenport & Glaser, 2022; Sachdeva & Jain, 2025). This suggests that procurement
strategies driven primarily by clinical prestige and external funding incentives may not
optimally address the multidimensional challenges facing healthcare systems.

The forthcoming implementation of the EU Artificial Intelligence Act introduces
a new layer of complexity that will disproportionately affect clinical AI applications.
The Act classifies many healthcare Al systems as high-risk, imposing lifecycle obliga-
tions for development, validation, market placement, and post-market surveillance
(European Parliament & Council of the European Union, 2024; van Kolfschooten &
van Oirschot, 2024). These requirements will likely increase the compliance burden
and time-to-deployment for clinical AI, potentially exacerbating existing implemen-
tation barriers related to regulatory fragmentation, technical integration, and eviden-
ce generation (Shah et al., 2025; van Kolfschooten & van Oirschot, 2024). In contrast,
many administrative Al applications will fall into lower-risk categories, suggesting
that regulatory dynamics may eventually help rebalance the clinical-administrative
divide, though only if procurement strategies and funding mechanisms adapt accor-
dingly (European Society of Radiology, 2025).

The role of funding architecture in shaping AI adoption patterns cannot be
overstated. The KPO example demonstrates how policy design, specifically, the
coupling of funding with explicit implementation expectations in certain doma-
ins but not others, can create structural incentives that override purely clinical or
operational considerations. Future policy interventions aimed at promoting more
balanced AI adoption should consider symmetric incentive structures that enco-
urage innovation across both clinical and administrative domains. This might inc-
lude targeted grants for operational A, procurement rules favouring demonstrable
return on investment in back-office automation, and reimbursement schemes that
reward efficiency improvements alongside clinical outcomes (Davenport & Glaser,
2022; Taheri Hosseinkhani, 2025).
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Barriers to Implementation and the Clinical-Administrative Divide

The observed procurement patterns reflect not only funding incentives but also fun-
damental differences in the implementation barriers facing clinical versus admini-
strative AI applications. Clinical AT deployment confronts a convergence of regula-
tory complexity, technical integration challenges, and validation requirements that
collectively explain why many promising models fail to reach routine care (Ali et al.,
2023; Esmaeilzadeh, 2024; Shah et al., 2025).

Regulatory fragmentation remains a persistent obstacle for clinical Al The pa-
tchwork of national, regional, and sectoral rules creates uncertainty around evidence
thresholds, liability expectations, and post-market monitoring obligations (European
Parliament & Council of the European Union, 2024; Shah et al., 2025). This regula-
tory complexity increases the perceived risk of clinical Al procurements, particular-
ly for hospital administrators who must navigate unclear compliance pathways. The
literature documents widespread calls for health-specific guidance under the EU Al
framework to operationalise legal obligations and reduce regulatory uncertainty (Eu-
ropean Society of Radiology, 2025; van Kolfschooten & van Oirschot, 2024).

Technical integration represents an equally significant barrier. Hospital infor-
mation technology infrastructure is often fragmented, with siloed electronic health
record systems, incompatible data formats, and insufficient platform architecture to
support seamless Al deployment (Ali et al., 2023; Esmaeilzadeh, 2024; Maimaitiaili
et al., 2025). These constraints impede data flows and workflow integration, making
many Al models impractical to embed in everyday care despite their demonstrated
performance in controlled research settings. The integration challenge is particularly
acute for clinical AI, which must interface with complex care pathways, real-time
clinical workflows, and multiple legacy systems simultaneously.

Validation and evidence generation requirements further differentiate clinical
from administrative Al. Clinical applications demand robust external validation,
prospective clinical trials, and ongoing post-market surveillance to establish safety
and efficacy, requirements that are less stringent for operational tools (European So-
ciety of Radiology, 2025; Maleki Varnosfaderani & Forouzanfar, 2024). Reviews con-
sistently emphasise the need for standardised validation frameworks and continuous
evidence generation before broad clinical adoption, reflecting appropriate caution gi-
ven the direct patient safety implications. However, these rigorous validation require-
ments extend development timelines and increase costs, creating additional barriers
to clinical AI procurement and deployment.
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In contrast, administrative Al applications face a different risk profile centred
on privacy, organisational disruption, and economic implications rather than direct
patient safety (Chowdhury Urbi & Gazi Tiva, 2025; Sachdeva & Jain, 2025). This
distinction in risk characteristics suggests that administrative Al could be deployed
more rapidly and with lower validation costs, yet the procurement data reveal that
this theoretical advantage has not translated into proportionate adoption. The unde-
rutilisation of administrative Al thus appears to reflect not technical or regulatory
constraints but rather organisational priorities, prestige considerations, and, as di-
scussed above, the asymmetric structure of funding incentives.

Economic and incentive misalignments further explain the clinical-administrative
divide. Payment models and reimbursement mechanisms in many healthcare systems
reward clinical interventions more directly than operational efficiencies, reducing pro-
vider willingness to invest in administrative automation even when return on invest-
ment is demonstrable (Davenport & Glaser, 2022; Taheri Hosseinkhani, 2025).

Positioning Within the Broader Healthcare AI Landscape

The findings of this study contribute to an emerging body of evidence documen-
ting the gap between Al research activity and real-world healthcare deployment.
Whilst the volume of published AI research continues to expand exponential-
ly, reviews consistently reveal that few models progress beyond pilot studies or
vendor demonstrations to achieve routine clinical integration (Ali et al., 2023;
Esmaeilzadeh, 2024). The 0.25% prevalence of Al-related procurements ob-
served in this study provides empirical confirmation of this implementation gap
from a procurement perspective, complementing existing evidence from clinical
audits and deployment surveys.

The dominance of diagnostic imaging in healthcare AI adoption is well-esta-
blished internationally, driven by the convergence of technological maturity, clear
clinical utility, regulatory acceptance, and commercial investment (George et al.,
2023; Maleki Varnosfaderani & Forouzanfar, 2024; Sathya, 2024). However, the ma-
gnitude of imaging dominance observed in Polish procurement data, with imaging
and auxiliary diagnostics accounting for nearly half of all AI procurements, suggests
that local factors, including KPO funding structure and associated implementation
expectations, may have amplified a global trend to create an even more pronounced
concentration in Poland (European Parliamentary Research Service, 2022; Minister-
stwo Funduszy i Polityki Regionalnej, 2022).
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The relative neglect of administrative AI applications represents a missed oppor-
tunity that is increasingly recognised in the literature. Operational domains such as
scheduling, resource allocation, billing automation, and workforce planning offer
tractable problems with clear metrics, shorter feedback loops, and lower regulato-
ry barriers than many clinical applications (Chowdhury Urbi & Gazi Tiva, 2025;
Davenport & Glaser, 2022; Sachdeva & Jain, 2025). Several analyses argue that real-
locating attention and resources towards these domains could yield substantial effi-
ciency gains and free clinical capacity for higher-value activities. The procurement
patterns documented here suggest that such reallocation has not yet occurred in Po-
lish healthcare, despite the theoretical advantages of administrative AL

The research and scientific applications domain, whilst representing only 14%
of procurements, merits particular attention as an enabler of future AT capabilities.
Investment in data infrastructure, anonymisation technologies, predictive modelling
platforms, and research support tools creates the foundation for more sophistica-
ted AT applications across both clinical and administrative domains (Al et al., 2023;
Esmaeilzadeh, 2024; Maimaitiaili et al., 2025). The modest but consistent presence of
these procurements suggests emerging recognition of the importance of data gover-
nance and analytical infrastructure, though the scale of investment remains limited
relative to the transformative potential of advanced analytics in healthcare.

6. Conclusions

This study shows that Al-related public procurement in the Polish healthcare sys-
tem is both rare and strongly skewed towards clinical applications, especially dia-
gnostic imaging. The observed structure suggests that adoption is shaped less by
a balanced assessment of system-wide needs and more by the combined force of
technological maturity, visibility and prestige of clinical tools, and the design of
public funding incentives. As a result, administrative and operational Al, despite
offering faster implementation pathways and potentially high efficiency gains, re-
mains underrepresented.

The findings point to a governance challenge: if procurement continues to priori-
tise clinically “showcase” solutions while back-office automation is treated as secon-
dary, system-level constraints such as staffing, throughput, scheduling, and documen-
tation burdens may persist and continue to limit clinical capacity. A more effective
trajectory would treat Al as a portfolio of interventions across the full value chain of
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care, with intentional balancing between clinical innovation, operational efficiency,
and investments in data infrastructure that enable long-term learning and analytics.

Ultimately, the results underline that procurement and funding architecture can
create structural bias in technology adoption. If policy instruments tie resources to
specific types of Al while leaving other domains without comparable incentives, in-
stitutions will rationally follow the strongest signals. Achieving more sustainable and
system-relevant Al uptake will require symmetric incentives, clearer implementation
pathways, and procurement strategies that reward measurable operational impact
alongside clinical benefits.
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