From Clinical Hype to Operational Value: Assessing AI Use Cases in Polish Hospitals

Main Article Content

Piotr Markowski
Anna Kowalczyk
Hubert Łazarczyk
Tomasz Berdyga

Abstract

Despite intense policy attention, artificial intelligence (AI) adoption in the Polish healthcare system remains far more visible in rhetoric than in formal procurement requirements. This study provides a managerial and policy-oriented mapping of AI deployment intent by analysing public procurement as an empirical proxy for organisational investment decisions. Using official repositories the Polish Public Procurement Bulletin (BZP) and EU Tenders Electronic Daily (TED), the study compiled a corpus of 85,501 healthcare-related notices published in 2022–2024 and applied a deliberately conservative, multi-stage identification pipeline combining large-language-model screening, Terms of Reference (TOR) verification, and expert oversight.


Only 210 procedures (approximately 0.25% of the corpus) contained explicit, verifiable AI functionality at TOR level, highlighting a substantial gap between “AI hype” and procurement-grade specification. The confirmed AI procurements are strongly concentrated in clinical applications (64.2%), while administrative processes account for 15% and research/scientific applications for 14%. The findings suggest a structural imbalance that may reflect not only technology maturity and clinical prestige, but also asymmetric funding incentives, including the National Recovery Plan (KPO), which has explicitly linked parts of digital-health modernisation to clinically framed AI implementations more strongly than to back-office automation. The article discusses governance implications under the EU AI Act, and argues that administrative AI can provide a lower-risk, faster-to-benefit pathway to measurable operational value, if procurement strategies and incentive structures are rebalanced.

Article Details

How to Cite
Markowski, P., Kowalczyk, A., Łazarczyk, H., & Berdyga, T. (2025). From Clinical Hype to Operational Value: Assessing AI Use Cases in Polish Hospitals. Warsaw Forum of Economic Sociology, 16(32). Retrieved from https://econjournals.sgh.waw.pl/wfes/article/view/5225
Section
Articles

References

Aboy, M., Minssen, T., & Vayena, E. (2024). Navigating the EU AI Act: Implications for regulated digital medical products. npj Digital Medicine, 7(1), Article 237.https://doi.org/10.1038/s41746-024-01232-3

Alami, H., Lehoux, P., Auclair, Y., de Guise, M., Gagnon, M.-P., Shaw, J., Fortin, J.-P., Fleet, R., Ag Ahmed, M. A., Zinszer, K., & Savoldelli, M. (2020). Artificial intelligence and health technology assessment: Anticipating a new level of complexity. Journal of Medical Internet Research, 22(7), e17707. https://doi.org/10.2196/17707

Ali, O. A., Abdelbaki, W., Shrestha, A., Elbasi, E., & Alryalat, M. A. A. (2023). A systematic literature review of artificial intelligence in the healthcare sector: Benefits, challenges, methodologies, and functionalities. Journal of Innovation & Knowledge, 8(1), 100333. https://doi.org/10.1016/j.jik.2023.100333

Almagadi, M. A. S., Banday, A. H., Almagadi, R. A., Adnan, N. M., & Alharbi, N. N. (2025). Enhancing administrative performance in the health sector through artificial intelligence: Pathways to operational efficiency and service quality. Journal of International Crisis and Risk Communication Research, 8(2), 194-201. https://doi.org/10.63278/jicrcr.vi.3137

Alves, M., Seringa, J., Silvestre, T., & Magalhães, T. (2024). Use of artificial intelligence tools in supporting decision-making in hospital management (Version 1) [Preprint]. Research Square. https://doi.org/10.21203/rs.3.rs-4491119/v1

Bartusek, M., & Kulawik, A. (2021). Analiza potrzeb zastosowania nowoczesnej technologii i sztucznej inteligencji w sektorze ochrony zdrowia [Analysis of the needs for modern technology and artificial intelligence application in the healthcare sector]. Forum Rozwoju Przedsiębiorczości. https://doi.org/10.56583/frp.633

Boverhof, B.-J., Redekop, W. K., Visser, J. J., de Feijter, J. M., & Majoie, C. B. L. M. (2024). Broadening the HTA of medical AI: A review of the literature to inform a tailored approach. Health Policy and Technology, 13(3), 100868. https://doi.org/10.1016/j.hlpt.2024.100868

Bukowski, M., Farkas, R., Beyan, O., et al. (2020). Implementation of eHealth and AI integrated diagnostics with multidisciplinary digitized data: Are we ready from an international perspective? European Radiology, 30(12), 6893-6902. https://doi.org/10.1007/s00330-020-06874-x

Celi, L. A., Cellini, J., Charpignon, M.-L., Dee, E. C., Dernoncourt, F., Eber, R., Mitchell, W. G., Moukheiber, L., Schirmer, J., Situ, J., Paguio, J., Park, J., Wawira, J., & Yao, S. (2022). Sources of bias in artificial intelligence that perpetuate healthcare disparities—A global review. PLOS Digital Health, 1(3), e0000022. https://doi.org/10.1371/journal.pdig.0000022

Char, D. S., Shah, N. H., & Magnus, D. (2018). Implementing machine learning in health care: Addressing ethical challenges. The New England Journal of Medicine, 378(11), 981-983. https://doi.org/10.1056/NEJMp1714229

Chomutare, T., Alonso Tejedor, M. A., Olsen Svenning, T., et al. (2022). Artificial intelligence implementation in healthcare: A theory-based scoping review of barriers and facilitators. International Journal of Environmental Research and Public Health, 19(23), 16359. https://doi.org/10.3390/ijerph192316359

Chowdhury Urbi, S. R., & Gazi Tiva, M. (2025). Technology and innovation in healthcare: Adoption of AI and predictive analytics in hospital management. https://doi.org/10.69937/pf.por.3.2.52

Coiera, E., & Liu, S. (2022). Evidence synthesis, digital scribes, and translational challenges for artificial intelligence in healthcare. Cell Reports Medicine, 3(12), 100860. https://doi.org/10.1016/j.xcrm.2022.100860

Davenport, T. H., & Glaser, J. (2022). Factors governing the adoption of artificial intelligence in healthcare providers. Discover Health Systems, 1(1), 13. https://doi.org/10.1007/s44250-022-00004

Esmaeilzadeh, P. (2024). Challenges and strategies for wide-scale artificial intelligence deployment in healthcare practices: A perspective for healthcare organizations. Artificial Intelligence in Medicine,

, 102861. https://doi.org/10.1016/j.artmed.2024.102861

European Commission. (n.d.). AI Act Service Desk: Article 9 (Risk management system). Retrieved December 16, 2025, from https://ai-act-service-desk.ec.europa.eu/en/ai-act/article-9

European Commission. (n.d.). AI Act Service Desk: Article 12 (Record-keeping). Retrieved December 16, 2025, from https://ai-act-service-desk.ec.europa.eu/en/ai-act/article-12

European Commission. (n.d.). AI Act Service Desk: Article 13 (Transparency and provision of information to deployers). Retrieved December 16, 2025, from https://ai-act-service-desk.ec.europa.eu/en/ai-act/article-13

European Commission. (n.d.). AI Act Service Desk: Article 14 (Human oversight). Retrieved December 16, 2025, from https://ai-act-service-desk.ec.europa.eu/en/ai-act/article-14

European Commission. (n.d.). AI Act Service Desk: Article 15 (Accuracy, robustness and cybersecurity).Retrieved December 16, 2025, from https://ai-act-service-desk.ec.europa.eu/en/ai-act/article-15

European Commission. (n.d.). AI Act Service Desk: Article 27 (Fundamental rights impact assessment).Retrieved December 16, 2025, from https://ai-act-service-desk.ec.europa.eu/en/ai-act/article-27

European Parliament and the Council of the European Union. (2024). Regulation (EU) 2024/1689 of 13 June 2024 laying down harmonised rules on artificial intelligence (Artificial Intelligence Act). Official

Journal of the European Union, L 2024/1689. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=OJ%3AL_202401689

European Parliamentary Research Service. (2022). Krajowy Plan Odbudowy i Zwiększania Odporności Polski [Briefing]. European Parliament. https://www.europarl.europa.eu/RegData/etudes/

BRIE/2022/733665/EPRS-Briefing-733665-NRRP-Poland-PL.pdf

European Society of Radiology. (2025). Guiding AI in radiology: ESR’s recommendations for effective implementation of the European AI Act. Insights into Imaging. https://doi.org/10.1186/s13244-025-01905-x

Farah, L., Borget, I., Martelli, N., et al. (2024). Suitability of the current health technology assessment of innovative artificial intelligence-based medical devices: Scoping literature review. Journal of Medical Internet Research, 26, e51514. https://doi.org/10.2196/51514

George, A. S. H., Shahul, A., & George, A. S. (2023). Artificial intelligence in medicine: A new way to diagnose and treat disease [Preprint]. Zenodo. https://doi.org/10.5281/zenodo.8374066

Glinkowski, W., Cedro, T., Wołk, A., et al. (2025). Telemedicine, eHealth, and digital transformation in Poland (2014-2024): Trends, specializations, and systemic implications. Applied Sciences, 15(16),

https://doi.org/10.3390/app15168793

Gomez Rossi, J., et al. (2022). Approaches to the economic evaluation of artificial intelligence in health care: A scoping review. Journal of Medical Internet Research, 24(5), e35603. https://doi.org/10.2196/35603

Horgan, D., Romão, M., Morré, S. A., & Kalra, D. (2019). Artificial intelligence: Power for civilisation—and for better healthcare. Public Health Genomics, 22(5-6), 145-161. https://doi.org/10.1159/000504785

Jakubek-Lalik, J. (2024). The challenges of AI in administrative law and the need for specific legal remedies: Analysis of Polish regulations and practice. Central European Public Administration Review,

(2), 85-106. https://doi.org/10.17573/cepar.2024.2.05

Khan, S. D., Hoodbhoy, Z., Raja, M. H. R., Kim, J. Y., Hogg, H. D. J., Manji, A. A. A., Gulamali, F., Hasan, A., Shaikh, A., Tajuddin, S., Khan, N. S., Patel, M. R., Balu, S., Samad, Z., & Sendak, M. P.

(2024). Frameworks for procurement, integration, monitoring, and evaluation of artificial intelligence tools in clinical settings: A systematic review. PLOS Digital Health, 3(5), e0000514. https://

doi.org/10.1371/journal.pdig.0000514

Kolfschooten, H., & van Oirschot, J. (2024). The EU Artificial Intelligence Act (2024): Implications for healthcare. Health Policy, 149, 105152. https://doi.org/10.1016/j.healthpol.2024.105152

Leo, C. G., Tumolo, M. R., Sabina, S., Bianco, A., Bianchi, F. P., Nobile, C. G. A., & Pavia, M. (2022).

Health technology assessment for in silico medicine: Social, ethical and legal aspects. International Journal of Environmental Research and Public Health, 19(3), 1510. https://doi.org/10.3390/ijerph19031510

Li, Q. (2022). The regulation of medical AI: Policy approaches, data, and innovation incentives (NBER Working Paper No. 30639). National Bureau of Economic Research. https://doi.org/10.3386/w30639

Maimaitiaili, M., Jiamaliding, J., Dai, W., Xiao, Y., & Kuerbanjiang, K. (2025). Artificial intelligence platform architecture for hospital systems: Systematic review. Journal of Medical Internet Research, 27,

e79788. https://doi.org/10.2196/79788

Maleki Varnosfaderani, S., & Forouzanfar, M. (2024). The role of AI in hospitals and clinics: Transforming healthcare in the 21st century. Bioengineering, 11(4), 337. https://doi.org/10.3390/bioengineering11040337

Martin, J., Hurcum, Z., Cross, S., Sivarajah, R., Papoutsaki, M., Adams, E., Peplinski, J., Newby, T., & Clark, J. (2025). Increasing MRI capacity at a clinical diagnostic centre and a trauma hospital using

artificial intelligence-based image reconstruction (AI-IR): A quality improvement project using the Model for Improvement framework. BMJ Open Quality, 14(4), e003470. https://doi.org/10.1136/bmjoq-2025-003470

McKee, M., & Wouters, O. J. (2022). The challenges of regulating artificial intelligence in healthcare. International Journal of Health Policy and Management, 11(9), 1966-1968. https://doi.org/10.34172/

ijhpm.2022.7261

Messmann, H., Bisschops, R., Antonelli, G., Libânio, D., Sinonquel, P., Abdelrahim, M., Ahmad, O. F., Areia, M., Bergman, J. J. G. H. M., Bhandari, P., Boskoski, I., Dekker, E., Domagk, D., Ebigbo, A., Eelbode, T., Eliakim, R., Häfner, M., Haidry, R. J., Jover, R., … Dinis-Ribeiro, M. (2022). Expected value of artificial intelligence in gastrointestinal endoscopy: European Society of Gastrointestinal Endoscopy (ESGE) position statement. Endoscopy, 54(12), 1211-1231. https://doi.org/10.1055/a-1950-5694

Ministerstwo Funduszy i Polityki Regionalnej. (2022). Krajowy Plan Odbudowy i Zwiększania Odporności. Government of Poland. https://www.funduszeeuropejskie.gov.pl/media/109762/KPO.pdf

Ministerstwo Zdrowia. (2025, April 11). Ruszył konkurs na cyfrową transformację ochrony zdrowia.Gov.pl. https://www.gov.pl/web/zdrowie/ruszyl-konkurs-na-cyfrowa-transformacje-ochrony-zdrowia

Ng Kok Wah, J. (2025). AI-driven eHealth technologies revolution: A novel review of emerging digital healthcare innovations and their transformative impact on global healthcare systems. Global Health Synapse, 2(1), 55-79. https://doi.org/10.63456/ghs-2-1-14

Parikh, R. B., & Helmchen, L. A. (2022). Paying for artificial intelligence in medicine. npj Digital Medicine, 5, 63. https://doi.org/10.1038/s41746-022-00609-6

Pashkov, V., Harkusha, A. O., & Harkusha, Y. O. (2020). Artificial intelligence in medical practice: Regulative issues and perspectives. Wiadomości Lekarskie, 73(12), 2722-2727. https://doi.org/10.36740/WLEK202012204

Popescu, E.-R., Geanta, M., & Brand, A. (2022). Mapping of clinical research on artificial intelligence in the treatment of cancer and the challenges and opportunities underpinning its integration in the European Union health sector. European Journal of Public Health, 32(3), 389-395. https://doi.org/10.1093/eurpub/ckac016

Ramsay, A. I. G., Crellin, N., Lawrence, R., Walton, H., Bagri, S., Dodsworth, E., Elphinstone, J., Gleeson, J., Halliday, L., Herbert, H., Lloyd, A., Massou, E., Mehta, N., Morris, S., Ng, A., O’Regan, C., Sherlaw-Johnson, C., & Fulop, N. J. (2025). Procurement and early deployment of artificial intelligence-based chest diagnostics in the English National Health Service: A retrospective, multicentre analysis. EClinicalMedicine, 89, 103481. https://doi.org/10.1016/j.eclinm.2025.103481

Sachdeva, C., & Jain, P. K. (2025). AI-driven innovations in healthcare administration: Streamlining processes for improved operational efficiency. International Journal for Multidisciplinary Research, 7(3). https://doi.org/10.36948/ijfmr.2025.v07i03.37788

Sathya, M. (2024). Shaping the future of healthcare with artificial intelligence: Current trends and beyond. African Journal of Biomedical Research, 27(4s). https://doi.org/10.53555/ajbr.v27i4s.5590Sciarretta, E., Mancini, R., & Greco, E. (2022). Artificial intelligence for healthcare and social services: Optimizing resources and promoting sustainability. Sustainability, 14(24), 16464. https://doi.org/10.3390/su142416464

Shah, A., Mitchell, S. F., Coad, G., & Michels, D. (2025). Safe and responsible use of artificial intelligence in health care: Current regulatory landscape and considerations for regulatory policy. JCO Clinical Cancer Informatics, 9, e2500123. https://doi.org/10.1200/cci-25-00123

Shaw, J., Rudzicz, F., Jamieson, T., & Goldfarb, A. (2019). Artificial intelligence and the implementation challenge. Journal of Medical Internet Research, 21(7), e13659. https://doi.org/10.2196/13659

Taheri Hosseinkhani, N. (2025). Economic evaluation of artificial intelligence integration in global healthcare: Balancing costs, outcomes, and investment value. OSF Preprints. https://doi.org/10.31219/osf.io/6k3bx_v1

Urbi, S. R. C., & Tiva, M. G. (2025). Technology and innovation in healthcare: Adoption of AI and predictive analytics in hospital management. Pathfinder of Research, 3(2), 22-45. https://doi.org/10.69937/pf.por.3.2.52

van Kolfschooten, H., & van Oirschot, J. (2024). The EU Artificial Intelligence Act (2024): Implications for healthcare. Health Policy, 149, 105152. https://doi.org/10.1016/j.healthpol.2024.105152

Weinert, A., et al. (2022). Perspective of information technology decision makers on factors influencing adoption and implementation of artificial intelligence technologies in 40 German hospitals: Descriptive analysis. JMIR Medical Informatics, 10(6), e34678. https://doi.org/10.2196/34678

Wolff, J., Pauling, J. K., Keck, A., & Baumbach, J. (2021). Success factors of artificial intelligence implementation in healthcare. Frontiers in Digital Health, 3, 594971. https://doi.org/10.3389/fdgth.2021.594971

World Health Organization. (2021). Ethics and governance of artificial intelligence for health: WHO guidance. World Health Organization. https://www.who.int/publications/i/item/9789240029200