From Clinical Hype to Operational Value: Assessing AI Use Cases in Polish Hospitals
Main Article Content
Abstract
Despite intense policy attention, artificial intelligence (AI) adoption in the Polish healthcare system remains far more visible in rhetoric than in formal procurement requirements. This study provides a managerial and policy-oriented mapping of AI deployment intent by analysing public procurement as an empirical proxy for organisational investment decisions. Using official repositories the Polish Public Procurement Bulletin (BZP) and EU Tenders Electronic Daily (TED), the study compiled a corpus of 85,501 healthcare-related notices published in 2022–2024 and applied a deliberately conservative, multi-stage identification pipeline combining large-language-model screening, Terms of Reference (TOR) verification, and expert oversight.
Only 210 procedures (approximately 0.25% of the corpus) contained explicit, verifiable AI functionality at TOR level, highlighting a substantial gap between “AI hype” and procurement-grade specification. The confirmed AI procurements are strongly concentrated in clinical applications (64.2%), while administrative processes account for 15% and research/scientific applications for 14%. The findings suggest a structural imbalance that may reflect not only technology maturity and clinical prestige, but also asymmetric funding incentives, including the National Recovery Plan (KPO), which has explicitly linked parts of digital-health modernisation to clinically framed AI implementations more strongly than to back-office automation. The article discusses governance implications under the EU AI Act, and argues that administrative AI can provide a lower-risk, faster-to-benefit pathway to measurable operational value, if procurement strategies and incentive structures are rebalanced.
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal. All authors agree for publishing their email adresses, affiliations and short bio statements with their articles during the submission process.
References
Aboy, M., Minssen, T., & Vayena, E. (2024). Navigating the EU AI Act: Implications for regulated digital medical products. npj Digital Medicine, 7(1), Article 237.https://doi.org/10.1038/s41746-024-01232-3
Alami, H., Lehoux, P., Auclair, Y., de Guise, M., Gagnon, M.-P., Shaw, J., Fortin, J.-P., Fleet, R., Ag Ahmed, M. A., Zinszer, K., & Savoldelli, M. (2020). Artificial intelligence and health technology assessment: Anticipating a new level of complexity. Journal of Medical Internet Research, 22(7), e17707. https://doi.org/10.2196/17707
Ali, O. A., Abdelbaki, W., Shrestha, A., Elbasi, E., & Alryalat, M. A. A. (2023). A systematic literature review of artificial intelligence in the healthcare sector: Benefits, challenges, methodologies, and functionalities. Journal of Innovation & Knowledge, 8(1), 100333. https://doi.org/10.1016/j.jik.2023.100333
Almagadi, M. A. S., Banday, A. H., Almagadi, R. A., Adnan, N. M., & Alharbi, N. N. (2025). Enhancing administrative performance in the health sector through artificial intelligence: Pathways to operational efficiency and service quality. Journal of International Crisis and Risk Communication Research, 8(2), 194-201. https://doi.org/10.63278/jicrcr.vi.3137
Alves, M., Seringa, J., Silvestre, T., & Magalhães, T. (2024). Use of artificial intelligence tools in supporting decision-making in hospital management (Version 1) [Preprint]. Research Square. https://doi.org/10.21203/rs.3.rs-4491119/v1
Bartusek, M., & Kulawik, A. (2021). Analiza potrzeb zastosowania nowoczesnej technologii i sztucznej inteligencji w sektorze ochrony zdrowia [Analysis of the needs for modern technology and artificial intelligence application in the healthcare sector]. Forum Rozwoju Przedsiębiorczości. https://doi.org/10.56583/frp.633
Boverhof, B.-J., Redekop, W. K., Visser, J. J., de Feijter, J. M., & Majoie, C. B. L. M. (2024). Broadening the HTA of medical AI: A review of the literature to inform a tailored approach. Health Policy and Technology, 13(3), 100868. https://doi.org/10.1016/j.hlpt.2024.100868
Bukowski, M., Farkas, R., Beyan, O., et al. (2020). Implementation of eHealth and AI integrated diagnostics with multidisciplinary digitized data: Are we ready from an international perspective? European Radiology, 30(12), 6893-6902. https://doi.org/10.1007/s00330-020-06874-x
Celi, L. A., Cellini, J., Charpignon, M.-L., Dee, E. C., Dernoncourt, F., Eber, R., Mitchell, W. G., Moukheiber, L., Schirmer, J., Situ, J., Paguio, J., Park, J., Wawira, J., & Yao, S. (2022). Sources of bias in artificial intelligence that perpetuate healthcare disparities—A global review. PLOS Digital Health, 1(3), e0000022. https://doi.org/10.1371/journal.pdig.0000022
Char, D. S., Shah, N. H., & Magnus, D. (2018). Implementing machine learning in health care: Addressing ethical challenges. The New England Journal of Medicine, 378(11), 981-983. https://doi.org/10.1056/NEJMp1714229
Chomutare, T., Alonso Tejedor, M. A., Olsen Svenning, T., et al. (2022). Artificial intelligence implementation in healthcare: A theory-based scoping review of barriers and facilitators. International Journal of Environmental Research and Public Health, 19(23), 16359. https://doi.org/10.3390/ijerph192316359
Chowdhury Urbi, S. R., & Gazi Tiva, M. (2025). Technology and innovation in healthcare: Adoption of AI and predictive analytics in hospital management. https://doi.org/10.69937/pf.por.3.2.52
Coiera, E., & Liu, S. (2022). Evidence synthesis, digital scribes, and translational challenges for artificial intelligence in healthcare. Cell Reports Medicine, 3(12), 100860. https://doi.org/10.1016/j.xcrm.2022.100860
Davenport, T. H., & Glaser, J. (2022). Factors governing the adoption of artificial intelligence in healthcare providers. Discover Health Systems, 1(1), 13. https://doi.org/10.1007/s44250-022-00004
Esmaeilzadeh, P. (2024). Challenges and strategies for wide-scale artificial intelligence deployment in healthcare practices: A perspective for healthcare organizations. Artificial Intelligence in Medicine,
, 102861. https://doi.org/10.1016/j.artmed.2024.102861
European Commission. (n.d.). AI Act Service Desk: Article 9 (Risk management system). Retrieved December 16, 2025, from https://ai-act-service-desk.ec.europa.eu/en/ai-act/article-9
European Commission. (n.d.). AI Act Service Desk: Article 12 (Record-keeping). Retrieved December 16, 2025, from https://ai-act-service-desk.ec.europa.eu/en/ai-act/article-12
European Commission. (n.d.). AI Act Service Desk: Article 13 (Transparency and provision of information to deployers). Retrieved December 16, 2025, from https://ai-act-service-desk.ec.europa.eu/en/ai-act/article-13
European Commission. (n.d.). AI Act Service Desk: Article 14 (Human oversight). Retrieved December 16, 2025, from https://ai-act-service-desk.ec.europa.eu/en/ai-act/article-14
European Commission. (n.d.). AI Act Service Desk: Article 15 (Accuracy, robustness and cybersecurity).Retrieved December 16, 2025, from https://ai-act-service-desk.ec.europa.eu/en/ai-act/article-15
European Commission. (n.d.). AI Act Service Desk: Article 27 (Fundamental rights impact assessment).Retrieved December 16, 2025, from https://ai-act-service-desk.ec.europa.eu/en/ai-act/article-27
European Parliament and the Council of the European Union. (2024). Regulation (EU) 2024/1689 of 13 June 2024 laying down harmonised rules on artificial intelligence (Artificial Intelligence Act). Official
Journal of the European Union, L 2024/1689. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=OJ%3AL_202401689
European Parliamentary Research Service. (2022). Krajowy Plan Odbudowy i Zwiększania Odporności Polski [Briefing]. European Parliament. https://www.europarl.europa.eu/RegData/etudes/
BRIE/2022/733665/EPRS-Briefing-733665-NRRP-Poland-PL.pdf
European Society of Radiology. (2025). Guiding AI in radiology: ESR’s recommendations for effective implementation of the European AI Act. Insights into Imaging. https://doi.org/10.1186/s13244-025-01905-x
Farah, L., Borget, I., Martelli, N., et al. (2024). Suitability of the current health technology assessment of innovative artificial intelligence-based medical devices: Scoping literature review. Journal of Medical Internet Research, 26, e51514. https://doi.org/10.2196/51514
George, A. S. H., Shahul, A., & George, A. S. (2023). Artificial intelligence in medicine: A new way to diagnose and treat disease [Preprint]. Zenodo. https://doi.org/10.5281/zenodo.8374066
Glinkowski, W., Cedro, T., Wołk, A., et al. (2025). Telemedicine, eHealth, and digital transformation in Poland (2014-2024): Trends, specializations, and systemic implications. Applied Sciences, 15(16),
https://doi.org/10.3390/app15168793
Gomez Rossi, J., et al. (2022). Approaches to the economic evaluation of artificial intelligence in health care: A scoping review. Journal of Medical Internet Research, 24(5), e35603. https://doi.org/10.2196/35603
Horgan, D., Romão, M., Morré, S. A., & Kalra, D. (2019). Artificial intelligence: Power for civilisation—and for better healthcare. Public Health Genomics, 22(5-6), 145-161. https://doi.org/10.1159/000504785
Jakubek-Lalik, J. (2024). The challenges of AI in administrative law and the need for specific legal remedies: Analysis of Polish regulations and practice. Central European Public Administration Review,
(2), 85-106. https://doi.org/10.17573/cepar.2024.2.05
Khan, S. D., Hoodbhoy, Z., Raja, M. H. R., Kim, J. Y., Hogg, H. D. J., Manji, A. A. A., Gulamali, F., Hasan, A., Shaikh, A., Tajuddin, S., Khan, N. S., Patel, M. R., Balu, S., Samad, Z., & Sendak, M. P.
(2024). Frameworks for procurement, integration, monitoring, and evaluation of artificial intelligence tools in clinical settings: A systematic review. PLOS Digital Health, 3(5), e0000514. https://
doi.org/10.1371/journal.pdig.0000514
Kolfschooten, H., & van Oirschot, J. (2024). The EU Artificial Intelligence Act (2024): Implications for healthcare. Health Policy, 149, 105152. https://doi.org/10.1016/j.healthpol.2024.105152
Leo, C. G., Tumolo, M. R., Sabina, S., Bianco, A., Bianchi, F. P., Nobile, C. G. A., & Pavia, M. (2022).
Health technology assessment for in silico medicine: Social, ethical and legal aspects. International Journal of Environmental Research and Public Health, 19(3), 1510. https://doi.org/10.3390/ijerph19031510
Li, Q. (2022). The regulation of medical AI: Policy approaches, data, and innovation incentives (NBER Working Paper No. 30639). National Bureau of Economic Research. https://doi.org/10.3386/w30639
Maimaitiaili, M., Jiamaliding, J., Dai, W., Xiao, Y., & Kuerbanjiang, K. (2025). Artificial intelligence platform architecture for hospital systems: Systematic review. Journal of Medical Internet Research, 27,
e79788. https://doi.org/10.2196/79788
Maleki Varnosfaderani, S., & Forouzanfar, M. (2024). The role of AI in hospitals and clinics: Transforming healthcare in the 21st century. Bioengineering, 11(4), 337. https://doi.org/10.3390/bioengineering11040337
Martin, J., Hurcum, Z., Cross, S., Sivarajah, R., Papoutsaki, M., Adams, E., Peplinski, J., Newby, T., & Clark, J. (2025). Increasing MRI capacity at a clinical diagnostic centre and a trauma hospital using
artificial intelligence-based image reconstruction (AI-IR): A quality improvement project using the Model for Improvement framework. BMJ Open Quality, 14(4), e003470. https://doi.org/10.1136/bmjoq-2025-003470
McKee, M., & Wouters, O. J. (2022). The challenges of regulating artificial intelligence in healthcare. International Journal of Health Policy and Management, 11(9), 1966-1968. https://doi.org/10.34172/
ijhpm.2022.7261
Messmann, H., Bisschops, R., Antonelli, G., Libânio, D., Sinonquel, P., Abdelrahim, M., Ahmad, O. F., Areia, M., Bergman, J. J. G. H. M., Bhandari, P., Boskoski, I., Dekker, E., Domagk, D., Ebigbo, A., Eelbode, T., Eliakim, R., Häfner, M., Haidry, R. J., Jover, R., … Dinis-Ribeiro, M. (2022). Expected value of artificial intelligence in gastrointestinal endoscopy: European Society of Gastrointestinal Endoscopy (ESGE) position statement. Endoscopy, 54(12), 1211-1231. https://doi.org/10.1055/a-1950-5694
Ministerstwo Funduszy i Polityki Regionalnej. (2022). Krajowy Plan Odbudowy i Zwiększania Odporności. Government of Poland. https://www.funduszeeuropejskie.gov.pl/media/109762/KPO.pdf
Ministerstwo Zdrowia. (2025, April 11). Ruszył konkurs na cyfrową transformację ochrony zdrowia.Gov.pl. https://www.gov.pl/web/zdrowie/ruszyl-konkurs-na-cyfrowa-transformacje-ochrony-zdrowia
Ng Kok Wah, J. (2025). AI-driven eHealth technologies revolution: A novel review of emerging digital healthcare innovations and their transformative impact on global healthcare systems. Global Health Synapse, 2(1), 55-79. https://doi.org/10.63456/ghs-2-1-14
Parikh, R. B., & Helmchen, L. A. (2022). Paying for artificial intelligence in medicine. npj Digital Medicine, 5, 63. https://doi.org/10.1038/s41746-022-00609-6
Pashkov, V., Harkusha, A. O., & Harkusha, Y. O. (2020). Artificial intelligence in medical practice: Regulative issues and perspectives. Wiadomości Lekarskie, 73(12), 2722-2727. https://doi.org/10.36740/WLEK202012204
Popescu, E.-R., Geanta, M., & Brand, A. (2022). Mapping of clinical research on artificial intelligence in the treatment of cancer and the challenges and opportunities underpinning its integration in the European Union health sector. European Journal of Public Health, 32(3), 389-395. https://doi.org/10.1093/eurpub/ckac016
Ramsay, A. I. G., Crellin, N., Lawrence, R., Walton, H., Bagri, S., Dodsworth, E., Elphinstone, J., Gleeson, J., Halliday, L., Herbert, H., Lloyd, A., Massou, E., Mehta, N., Morris, S., Ng, A., O’Regan, C., Sherlaw-Johnson, C., & Fulop, N. J. (2025). Procurement and early deployment of artificial intelligence-based chest diagnostics in the English National Health Service: A retrospective, multicentre analysis. EClinicalMedicine, 89, 103481. https://doi.org/10.1016/j.eclinm.2025.103481
Sachdeva, C., & Jain, P. K. (2025). AI-driven innovations in healthcare administration: Streamlining processes for improved operational efficiency. International Journal for Multidisciplinary Research, 7(3). https://doi.org/10.36948/ijfmr.2025.v07i03.37788
Sathya, M. (2024). Shaping the future of healthcare with artificial intelligence: Current trends and beyond. African Journal of Biomedical Research, 27(4s). https://doi.org/10.53555/ajbr.v27i4s.5590Sciarretta, E., Mancini, R., & Greco, E. (2022). Artificial intelligence for healthcare and social services: Optimizing resources and promoting sustainability. Sustainability, 14(24), 16464. https://doi.org/10.3390/su142416464
Shah, A., Mitchell, S. F., Coad, G., & Michels, D. (2025). Safe and responsible use of artificial intelligence in health care: Current regulatory landscape and considerations for regulatory policy. JCO Clinical Cancer Informatics, 9, e2500123. https://doi.org/10.1200/cci-25-00123
Shaw, J., Rudzicz, F., Jamieson, T., & Goldfarb, A. (2019). Artificial intelligence and the implementation challenge. Journal of Medical Internet Research, 21(7), e13659. https://doi.org/10.2196/13659
Taheri Hosseinkhani, N. (2025). Economic evaluation of artificial intelligence integration in global healthcare: Balancing costs, outcomes, and investment value. OSF Preprints. https://doi.org/10.31219/osf.io/6k3bx_v1
Urbi, S. R. C., & Tiva, M. G. (2025). Technology and innovation in healthcare: Adoption of AI and predictive analytics in hospital management. Pathfinder of Research, 3(2), 22-45. https://doi.org/10.69937/pf.por.3.2.52
van Kolfschooten, H., & van Oirschot, J. (2024). The EU Artificial Intelligence Act (2024): Implications for healthcare. Health Policy, 149, 105152. https://doi.org/10.1016/j.healthpol.2024.105152
Weinert, A., et al. (2022). Perspective of information technology decision makers on factors influencing adoption and implementation of artificial intelligence technologies in 40 German hospitals: Descriptive analysis. JMIR Medical Informatics, 10(6), e34678. https://doi.org/10.2196/34678
Wolff, J., Pauling, J. K., Keck, A., & Baumbach, J. (2021). Success factors of artificial intelligence implementation in healthcare. Frontiers in Digital Health, 3, 594971. https://doi.org/10.3389/fdgth.2021.594971
World Health Organization. (2021). Ethics and governance of artificial intelligence for health: WHO guidance. World Health Organization. https://www.who.int/publications/i/item/9789240029200