Which Electric Cars Disadvantages Are Most Significant from the Users' Perspective? An Analysis of Key Factors

Main Article Content

Joanna Czerepko
Piotr Sliż
Aleksander Jagiełło

Abstrakt

Niniejszy artykuł ma na celu zidentyfikowanie wad samochodów elektrycznych, wynikających z ich obecnego poziomu rozwoju technologicznego oraz stanu infrastruktury wspierającej, które użytkownicy postrzegają jako szczególnie problematyczne. Nasilenie każdego z czynników oceniano w dwóch wymiarach: po pierwsze, biorąc pod uwagę prawdopodobieństwo wystąpienia danego problemu według opinii użytkowników; po drugie, oceniając znaczenie jego potencjalnego wpływu na respondentów. Obie oceny opierają się na percepcjach rzeczywistych użytkowników samochodów elektrycznych. W badaniu zastosowano przegląd literatury, ankiety opinii z nielosowym doborem próby oraz analizy statystyczne. Badanie przeprowadzono na próbie 59 użytkowników samochodów elektrycznych w Polsce. Oryginalność artykułu polega na dwuwymiarowym podejściu do oceny wad samochodów elektrycznych, łączącym prawdopodobieństwo ich wystąpienia z postrzeganą istotnością ich wpływu z perspektywy rzeczywistych użytkowników. Takie podejście zapewnia kompleksowy wgląd w wyzwania związane z adopcją pojazdów elektrycznych, wynikające z doświadczeń użytkowników.

Downloads

Download data is not yet available.

Article Details

Jak cytować
Czerepko, J., Sliż, P., & Jagiełło, A. (2025). Which Electric Cars Disadvantages Are Most Significant from the Users’ Perspective? An Analysis of Key Factors. Journal of Management and Financial Sciences, (56), 9–29. https://doi.org/10.33119/JMFS.2025.56.1
Dział
Articles

Bibliografia

ACEA. (February 26, 2022). Light commercial vehicle sales in Europe between 2019 and 2021, by country (in units) [Graph]. In Statista. Retrieved January 25, 2023, from https://www-1statista-1com-1isvchtso0459.hansolo.bg.ug.edu.pl/statistics/1122698/light-commercial-vehicle-sales-by-country-europe/, access: 24.01.2023

Battery Electric Vehicles - Europe. (n.d.). Retrieved January 25, 2023, from https://www-1statista-1com-1isvchtso0459.hansolo.bg.ug.edu.pl/outlook/mmo/electric-vehicles/battery-electric-vehicles/europe, access: 24.01.2023

WysokieNapiecie.pl. (June 8, 2021). Number of e-car charging points in Poland in 2020, by operators and type of charging [Graph]. In Statista. Retrieved January 25, 2023, from https://www-1statista-1com-1isvchtso0459.hansolo.bg.ug.edu.pl/statistics/1099538/poland-electric-vehicle-charging-station-operators-by-type-of-charging/, access: 23.01.2023

EAFO. (October 8, 2021). Number of electric vehicle fast charging stations per 100 km highway in Poland from 2016 to 2020 [Graph]. In Statista. Retrieved January 25, 2023, from https://www-1statista-1com-1isvchtso0459.hansolo.bg.ug.edu.pl/statistics/1057416/poland-number-of-fast-chargers-per-100-km-highway/, access: 22.01.2023

Statista. (February 2, 2021). Passenger car sales in selected European countries in 2021, by fuel type [Graph]. In Statista. Retrieved January 25, 2023, from https://www-1statista-1com-1isvchtso0459.hansolo.bg.ug.edu.pl/statistics/500546/share-of-fuel-types-of-passenger-car-fleet-in-europe-by-country/, access: 24.01.2023

VDA. (April 23, 2021). Ratio of electric cars per 1,000 inhabitants worldwide in 2020, by key country [Graph]. In Statista. Retrieved January 25, 2023, from https://www-1statista-1com-1isvchtso0459.hansolo.bg.ug.edu.pl/statistics/1256609/electric-cars-per-population-worldwide/, access: 23.01.2023

Więcław, F. (2022). Zależność pomiędzy posiadaniem samochodu elektrycznego, a zainteresowaniem ekologią. Retrieved January 25, 2023, from https://ruj.uj.edu.pl/entities/publication/6d75a9f5-7646-47b0-ac2a-0b06debbfb25

Śliwka, M., Łyko, P., & Pomykała, R. (2015). Aspekty ekonomiczne i ekologiczne wybranych alternatywnych źródeł zasilania samochodów osobowych. Logistyka, 4, 9865-9870.

Zagajewska, K., & Hasiuk, A. (2011). Aspekty ekologiczne jako stymulatory sprzedaży samochodów. Management Systems in Production Engineering, 16-21.

Janczewski, J. (2017). Determinanty rozwoju elektromobilności. Wybrane kwestie. Zarządzanie Innowacyjne w Gospodarce i Biznesie, 2, (28), 205-219.

Łosiewicz, Z., & Sendek-Matysiak, E. (2018). Rozwój elektromobilności: w aspekcie eksploatacji samochodów z napędem elektrycznym. Autobusy: technika, eksploatacja, systemy transportowe, 19.

Moćko, W., Wojciechowski, A., & Ornowski, M. (2011). Perspektywy rozwoju rynku samochodów elektrycznych w najbliższych latach. Transport samochodowy, 1, 63-71.

Fasiecka, O., & Marek, M. (2018). Odnawialne źródła energii a rozwój elektromobilności. Problemy Transportu i Logistyki, 44, 7-14.

Borge-Diez, D., Icaza, D., Açıkkalp, E., & Amaris, H. (2021). Combined vehicle to building (V2B) and vehicle to home (V2H) strategy to increase electric vehicle market share. Energy, 237, 121608.

Gärling, A., & Thøgersen, J. (2001). Marketing of electric vehicles. Business Strategy and the Environment, 10 (1), 53-65.

Nour, M., Chaves-Ávila, J. P., Magdy, G., & Sánchez-Miralles, Á. (2020). Review of positive and negative impacts of electric vehicles charging on electric power systems. Energies, 13 (18), 4675.

Chinoracky, R., Stalmasekova, N., & Corejova, T. (2022). Trends in the Field of Electromobility—From the Perspective of Market Characteristics and Value-Added Services: Literature Review. Energies, 15 (17), 6144.

Tundys, B., & Wiśniewski, T. (2023). Smart Mobility for Smart Cities—Electromobility Solution Analysis and Development Directions. Energies, 16 (4), 1958.

Singh, V., Singh, V., & Vaibhav, S. (2020). A review and simple meta-analysis of factors influencing adoption of electric vehicles. Transportation Research Part D: Transport and Environment, 86, 102436

Chen, C. F., de Rubens, G. Z., Noel, L., Kester, J., & Sovacool, B. K. (2020). Assessing the socio-demographic, technical, economic and behavioral factors of Nordic electric vehicle adoption and the influence of vehicle-to-grid preferences. Renewable and Sustainable Energy Reviews, 121, 109692.

Capuder, T., Sprčić, D. M., Zoričić, D., & Pandžić, H. (2020). Review of challenges and assessment of electric vehicles integration policy goals: Integrated risk analysis approach. International Journal of Electrical Power & Energy Systems, 119, 105894.

Adhikari, M., Ghimire, L. P., Kim, Y., Aryal, P., & Khadka, S. B. (2020). Identification and analysis of barriers against electric vehicle use. Sustainability, 12(12), 4850.

Neves, S. A., Marques, A. C., & Fuinhas, J. A. (2019). Technological progress and other factors behind the adoption of electric vehicles: Empirical evidence for EU countries. Research in Transportation Economics, 74, 28-39.

Wang, N., Tang, L., & Pan, H. (2019). A global comparison and assessment of incentive policy on electric vehicle promotion. Sustainable Cities and Society, 44, 597-603.

Globisch, J., Plötz, P., Dütschke, E., & Wietschel, M. (2019). Consumer preferences for public charging infrastructure for electric vehicles. Transport Policy, 81, 54-63.

Krishna, G. (2021). Understanding and identifying barriers to electric vehicle adoption through thematic analysis. Transportation Research Interdisciplinary Perspectives, 10, 100364.

Chakraborty, D., Bunch, D. S., Lee, J. H., & Tal, G. (2019). Demand drivers for charging infrastructure-charging behavior of plug-in electric vehicle commuters. Transportation Research Part D: Transport and Environment, 76, 255-272.

Sendek-Matysiak, E. (2020). Najważniejsze bariery rozwoju elektromobilności w Polsce. Przegląd Komunikacyjny, 75.

Savari, G. F., Sathik, M. J., Raman, L. A., El-Shahat, A., Hasanien, H. M., Almakhles, D., ... & Omar, A. I. (2022). Assessment of charging technologies, infrastructure and charging station recommendation schemes of electric vehicles: A review. Ain Shams Engineering Journal, 101938.

Chmielewski, A., Piórkowski, P., Możaryn, J., & Ozana, S. (2023). Sustainable Development of Operational Infrastructure for Electric Vehicles: A Case Study for Poland. Energies, 16 (11), 4528.

Weber, J. (2020). Bewegende Zeiten. Mobilität der Zukunft. Wiesbaden.

Petrović, Đ. T., Pešić, D. R., Petrović, M. M., & Mijailović, R. M. (2020). Electric cars: Are they solution to reduce CO2 emission?. Thermal science, 24 (5 Part A), 2879-2889.

Wang, N., Liu, Q., Guo, J., & Fang, T. (2022). A user-based adaptive joint relocation model combining electric car-sharing and bicycle-sharing. Transportmetrica B: transport dynamics, 10 (1), 1046-1069.

Brezovec, P., & Hampl, N. (2021). Electric vehicles ready for breakthrough in MaaS? consumer adoption of E-car sharing and E-scooter sharing as a part of mobility-as-a-service (MaaS). Energies, 14 (4), 1088

Ortar, N., & Ryghaug, M. (2019). Should all cars be electric by 2025? The electric car debate in Europe. Sustainability, 11 (7), 1868.

Bell, L., Spinler, S., & Winkenbach, M. (2022). Economic, social and ecological impact assessment of mixed light rail, battery-electric vehicles, fuel cell-electric vehicles and electrified cargo bikes in urban environment of advanced integrated simulation approach. Fuel Cell-Electric Vehicles and Electrified Cargo Bikes in Urban Environment of Advanced Integrated Simulation Approach. SSRN Electronic Journal (January 17, 2022).

Hu, J. W., Javaid, A., & Creutzig, F. (2021). Leverage points for accelerating adoption of shared electric cars: Perceived benefits and environmental impact of NEVs. Energy Policy, 155, 112349.

Sobiech-Grabka, K., Stankowska, A., & Jerzak, K. (2022). Determinants of electric cars purchase intention in Poland: personal attitudes v. economic arguments. Energies, 15 (9), 3078.

Campisi, T., Ignaccolo, M., Tesoriere, G., Inturri, G., & Torrisi, V. (2020). The evaluation of car-sharing to raise acceptance of electric vehicles: evidences from an italian survey among university students (No. 2020-24-0021). SAE Technical Paper.

Chen, M., Ma, X., Chen, B., Arsenault, R., Karlson, P., Simon, N., & Wang, Y. (2019). Recycling end-of-life electric vehicle lithium-ion batteries. Joule, 3(11), 2622-2646.

Ravi, S. S., & Aziz, M. (2022). Utilization of electric vehicles for vehicle-to-grid services: Progress and perspectives. Energies, 15 (2), 589.

Zhou, G., Zhu, Z., & Luo, S. (2022). Location optimization of electric vehicle charging stations: Based on cost model and genetic algorithm. Energy, 247, 123437.

Ucer, E., Koyuncu, I., Kisacikoglu, M. C., Yavuz, M., Meintz, A., & Rames, C. (2019). Modeling and analysis of a fast charging station and evaluation of service quality for electric vehicles. IEEE Transactions on Transportation Electrification, 5 (1), 215-225.

Ryu, S. H., Kim, D. H., Kim, M. J., Kim, J. S., & Lee, B. K. (2014). Adjustable frequency–duty-cycle hybrid control strategy for full-bridge series resonant converters in electric vehicle chargers. IEEE Transactions on Industrial Electronics, 61 (10), 5354-5362.

Cavadas, J., de Almeida Correia, G. H., & Gouveia, J. (2015). A MIP model for locating slow-charging stations for electric vehicles in urban areas accounting for driver tours. Transportation Research Part E: Logistics and Transportation Review, 75, 188-201.

Zhang, X., Liang, Y., Yu, E., Rao, R., & Xie, J. (2017). Review of electric vehicle policies in China: Content summary and effect analysis. Renewable and Sustainable Energy Reviews, 70, 698-714.

Nyeste, P., & Wogalter, M. S. (2008, September). On adding sound to quiet vehicles. In Proceedings of the human factors and ergonomics society annual meeting (Vol. 52, No. 21, pp. 1747-1750). Sage CA: Los Angeles, CA: Sage Publications.

Oman, H. (2002). Electric car progress. IEEE Aerospace and Electronic Systems Magazine, 17 (6), 30-35.

Liu, Y., Chen, H., Li, Y., Gao, J., Dave, K., Chen, J., ... & Tu, R. (2022). Exhaust and non-exhaust emissions from conventional and electric vehicles: A comparison of monetary impact values. Journal of Cleaner Production, 331, 129965.

Mandys, F. (2021). Electric vehicles and consumer choices, Renewable and Sustainable Energy Reviews, 142 110874.

Koengkan, M., Fuinhas, J. A., Teixeira, M., Kazemzadeh, E., Auza, A., Dehdar, F., & Osmani, F. (2022). The capacity of battery-electric and plug-in hybrid electric vehicles to mitigate CO2 emissions: macroeconomic evidence from european union countries. World Electric Vehicle Journal, 13(4), 58.

Cherubini, S., Iasevoli, G., & Michelini, L. (2015). Product-service systems in the electric car industry: critical success factors in marketing. Journal of Cleaner Production, 97, 40-49.

Helmers, E., Dietz, J., & Hartard, S. (2017). Electric car life cycle assessment based on real-world mileage and the electric conversion scenario. The International Journal of Life Cycle Assessment, 22, 15-30.

Soret, A., Guevara, M., & Baldasano, J. M. (2014). The potential impacts of electric vehicles on air quality in the urban areas of Barcelona and Madrid (Spain). Atmospheric environment, 99, 51-63.

Li, N., Chen, J. P., Tsai, I. C., He, Q., Chi, S. Y., Lin, Y. C., & Fu, T. M. (2016). Potential impacts of electric vehicles on air quality in Taiwan. Science of the total environment, 566, 919-928.

Pan, S., Yu, W., Fulton, L. M., Jung, J., Choi, Y., & Gao, H. O. (2023). Impacts of the large-scale use of passenger electric vehicles on public health in 30 US. metropolitan areas. Renewable and Sustainable Energy Reviews, 173, 113100.

JiYang Xu 1,2 , Jian Ma 1,*, Xuan Zhao 1, Hao Chen 1, Bin Xu 1 and XueQin Wu. (2020). Detection Technology for Battery Safety in Electric Vehicles: A Review [in:] Energies, 13, 4636; doi:10.3390/en13184636.

Liao, Z.H.; Zhang, S.; Li, K.; Zhao, N.Y.; Qiu, Z.J.; Zhang, G.Q.; Habetlerc, T. (2020). Hazard analysis of thermally abused lithium-ion batteries at different state of charges. J. Energy Storage, 27, 101065.

Feng X., Ouyang M., Liu X., Lu L., Xia Y., He X. (2018). Thermal runaway mechanism of lithium ion battery for electric vehicles: A review Energy Storage Materials, 10, 246-267.

Majchrzak K., Olczak P., Matuszewska D., Wdowin M., Economic and environmental assessment of the use of electric cars in Poland Polityka Energetyczna – Energy Policy Journal 2021 Volume 24 Issue 1 153–168 DOI: 10.33223/epj/130209.

Krupa, K., Nieradko, Ł. and Haraziński, A. 2018. Prospects for energy storage in the world and in Poland in the 2030 horizon. Polityka Energetyczna – Energy Policy Journal 21 (2), 19–34, DOI: 10.24425/122770.

Polskie Stowarzyszenie Paliw Alternatywnych (PSPA) https://pspa.com.pl/research/licznik-elektromobilnosci/ (access: 01.11.2023 r.).

Ahuja, J., Dawson, L. and Lee, R. (2020). A circular economy for electric vehicle batteries: driving the change, Journal of Property, Planning and Environmental Law, Vol. 12 No. 3, pp. 235-250. https://doi.org/10.1108/JPPEL-02-2020-0011

Yu X., Li W., Gupta V., Gao H., Tran D., Sarwar S., Chen Z. (2022). Current Challenges in Efficient Lithium-Ion Batteries’Recycling: A Perspective, Global Challenges, Volume 6, Issue 12.

Hall D., Lutsey N, (2020). Charging infrastructure in cities: Metrics for evaluating future needs, WORKING PAPER 2020-17, International Council On Clean Transportation, https://theicct.org/sites/default/files/publications/EV-charging-metrics-aug2020.pdf

Drożdż, W., Szczerba, P. and Kruszyński, D. (2020). Issues related to the development of electromobility from the point of view of Polish utilities. Polityka Energetyczna – Energy Policy Journal 23 (1), 49–64, DOI: 10.33223/epj/119074.

Canizes, B.; Soares, J.; Costa, A.; Pinto, T.; Lezama, F.; Novais, P.; Vale, Z. (2019). Electric Vehicles’ User Charging Behaviour Simulator for a Smart City. Energies 2019, 12, 1470.

Franke, T.; Krems, J.F. (2013). Understanding charging behaviour of electric vehicle users. Transp. Res. Part F Traffic Psychol. Behav. 21, 75–89.

JATO (2023) EV Price Gap: A divide in the Global automotive industry - Report https://20190729.fs1.hubspotusercontent-na1.net/hubfs/20190729/Q4%202023%20%20EV%20Price%20Gap%20Report/JATO%20mini%20Paper%2c%20EV%20price%20gap%2c%20A%20divide%20in%20the%20global%20automotive%20industry..pdf?__hstc=14747689.05702dc0f488768f52feb965d6f8869f.1698763233115.1698763233115.1698763233115.1&__hssc=14747689.1.1698763233115&__hsfp=4135868013.

Wieteska S., Jeziorska M., Majewski P. (2017). Identyfikacja pola ubezpieczeniowego i ocena ryzyka eksploatacji samochodowych pojazdów elektrycznych w ubezpieczeniu autocasco, Journal of Management and Finance Vol. 15, No. 3.

Ewelina, S.-M.; Grysa, K. (2021) Assessment of the Total Cost of Ownership of Electric Vehicles in Poland. Energies, 14, 4806. https://doi.org/10.3390/en14164806.

Wu, G.; Inderbitzin, A.; Bening, C. (2015). Total cost of ownership of electric vehicles compared to conventional vehicles: A probabilistic analysis and projection across market segments. Energy Policy, 80, 196–214.

Liu W., Placke T., Chau K.T. (2022). Overview of batteries and battery management for electric vehicles, Energy Reports. 8, 4058–4084.

Donkers A., Yang D., Viktorović M. (2020). Influence of driving style, infrastructure, weather and traffic on electric vehicle performance, Transportation Research Part D 88, 102569.

Wu X., Freese D., Cabrera A., Kitch W. A. (2015), Electric vehicles’ energy consumption measurement and estimation, Transportation Research Part D: Transport and Environment, Volume 34, 52-67.

Neubauer J., Wood E. (2014), The impact of range anxiety and home, workplace, and public charging infrastructure on simulated battery electric vehicle lifetime utility, Journal of Power Sources 257:12–20.

Sendek-Matysiak E., Rzędowski H. (2022). The costs of charging electric vehicles in Poland, Communications - Scientific Letters of the University of Zilina 2022, 24 (1).