Correlation analysis of survey data with the use of hidden Markov models

Main Article Content

Michał Bernardelli

Abstract

The paper proposes a new measure of the similarity between time series, based on hidden Markov models and Viterbi paths. The results are compared with the Pearson correlation coefficient. The comparison shows that the proposed measure gives more accurate estimates of the similarity and has some advantages over other measures commonly used, namely, it identifies periods (subsamples) of high and low similarity between time series.(original abstract)

Article Details

Section
Articles

References

Bernardelli, M. (2014). Parallel deterministic procedure based on hidden Markov models for the analysis of economic cycles in Poland. "Roczniki Kolegium Analiz Ekonomicznych SGH", 34: 75-87.

Bernardelli, M. Hidden Markov models as a tool for assessing dependence of phenomena of an economic nature. "Acta Universitatis Lodziensis. Folia Oeconomica". To be published.

Bernardelli, M., Dędys, M. (2014). The Viterbi path of hidden Markov models in an analysis of business tendency surveys, "Prace i Materiały Instytutu Rozwoju Gospodarczego SGH".

Bernardelli M., Dędys M. (2017). Mapping the respondents' assessments in the RIED manufacturing tendency survey using the Viterbi paths. "Prace i Materiały Instytutu Rozwoju Gospodarczego", 101: 27-44.

Cappe O., Moulines E., Ryden T. (2005). Inference in Hidden Markov Models. Springer.

Kendall, M. G., Stuart, A. (1973), The Advanced Theory of Statistics, Volume 2: Inference and Relationship, Griffin.

Soper, H. E., Young, A. W., Cave, B. M., Lee, A., Pearson, K. (1917). On the distribution of the correlation coefficient in small samples. "Biometrika", 11: 328-413.

Szekely, G. J., Rizzo M. L., Bakirov N. K. (2007). Measuring and testing dependence by correlation of distances." Ann. Statist.", 35(6): 2769-2794.

Tjostheim D., Hufthammer K. O. (2013). Local Gaussian correlation: A new measure of dependence. "Journal of Econometrics", 172(1): 33-48.