Pomiar ryzyka rynkowego miarą wartości zagrożonej. Metoda kombinowania prognoz
Main Article Content
Abstrakt
The article discusses the measurement of market risk by Value at Risk method. Value at Risk measure is an important element of risk measurement mainly for financial institutions but can also be used by other companies. The Value at Risk is presented together with its alternative Conditional Value at Risk. The main methods of VaR estimation were divided into nonparametric, parametric and semi-parametric methods. The next part of the article presents a method of combining forecasts, which can be used in the context of forecasting Value at Risk.
Downloads
Article Details
Autor (Autorzy) artykułu oświadcza, że przesłane opracowanie nie narusza praw autorskich osób trzecich. Wyraża zgodę na poddanie artykułu procedurze recenzji oraz dokonanie zmian redakcyjnych. Przenosi nieodpłatnie na Oficynę Wydawniczą SGH autorskie prawa majątkowe do utworu na polach eksploatacji wymienionych w art. 50 Ustawy z dnia 4 lutego 1994 r. o prawie autorskim i prawach pokrewnych – pod warunkiem, że praca została zaakceptowana do publikacji i opublikowana.
Oficyna Wydawnicza SGH posiada autorskie prawa majątkowe do wszystkich treści czasopisma. Zamieszczenie tekstu artykuły w repozytorium, na stronie domowej autora lub na innej stronie jest dozwolone o ile nie wiąże się z pozyskiwaniem korzyści majątkowych, a tekst wyposażony będzie w informacje źródłowe (w tym również tytuł, rok, numer i adres internetowy czasopisma).
Osoby zainteresowane komercyjnym wykorzystaniem zawartości czasopisma proszone są o kontakt z Redakcją.
Bibliografia
Abad P., Muela S., A detailed comparison of Value at Risk in international stock exchanges, „Working Paper: Documentos de Trabajo FUNCAS’’ No. 452, 2009.
Adam T. R., Fernando C. S., Hedging, speculation, and shareholder value, „Journal of Financial Economics’’ No. 2, 2006, s. 283–309.
Alexander C., Market Risk Analysis, Vol. 4, Wiley, Chichester 2008.
Aretz K., Bartram S. M., Corporate hedging and shareholder value, „SSRN Scholarly Paper. Rochester, NY: Social Science Research Network’’ 2009.
Armstrong J. S. et al., Golden rule of forecasting: Be conservative, „Journal of Business Research, Special Issue on Simple Versus Complex Forecasting’’ No. 8, 2015, s. 1717–1731.
„Basel II: International convergence of capital measurement and capital standards: a revised framework”, 2004, http://www.bis.org/publ/bcbs107.htm
Bates J. M., Granger C. W. J., The combination of forecasts, „Journal of the Operational Research Society’’ No. 4, 1969, s. 451–468.
Bayer S., Combining Value at Risk forecasts using penalized quantile regressions, „Econometrics and Statistics’’ No. 24, 2017 [in press].
Bjørnland H. et al., Does forecast combination improve norges bank inflation forecasts?, „Oxford Bulletin of Economics and Statistics’’ No. 2, 2012, s. 163–179.
Bollerslev T., Generalized autoregressive conditional heteroskedasticity, „Journal of Econometrics’’ No. 3, 1986, s. 307–327.
Brandtner M., Kürsten W., Solvency II, regulatory capital, and optimal reinsurance: How good are Conditional Value at Risk and spectral risk measures?, „Insurance: Mathematics and Economics’’ No. C, 2014, s. 156–167.
Chlebus M., EWS-GARCH: New regime switching approach to forecast Value at Risk, „Working Paper. Faculty of Economic Sciences”, University of Warsaw 2016.
Chlebus M., Pomiar ryzyka rynkowego za pomocą miary Value at Risk – podejście dwuetapowe, Wydział Nauk Ekonomicznych, Uniwersytet Warszawski, Warszawa 2014.
Clemen R. T., Combining forecasts: A review and annotated bibliography, „International Journal of Forecasting’’ No. 4, 1989, s. 559–583.
Clemen R. T., Winkler R. L., Combining economic forecasts, „Journal of Business & Economic Statistics’’ No. 1, 1986, s. 39–46.
Cornaggia J., Does risk management matter? Evidence from the U. S. agricultural industry, „Journal of Financial Economics’’ No. 2, 2013, s. 419–440.
Dowd K., An introduction to market risk measurement, Wiley, Chichester 2002.
Elliott G. et al., Handbook of economic forecasting, Elsevier, North Holland 2006.
Engle R. F., Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation, „Econometrica’’ No. 4, 1982, s. 987–1007.
Glosten L. R. et al., On the relation between the expected value and the volatility of the nominal excess return on stocks, „The Journal of Finance’’ No. 5, 1993, s. 1779–1801.
Graefe A. et al., Combining forecasts: An application to elections, „International Journal of Forecasting’’ No. 1, 2014, s. 43–54.
Greszta M., Maciejewski W., Kombinowanie prognoz gospodarki Polski, „Gospodarka Narodowa’’ nr 5–6, 2005, s. 49–61.
Halbleib R., Pohlmeier W., Improving the Value at Risk forecasts: Theory and evidence from the financial crisis, „Journal of Economic Dynamics and Control, Quantifying and Understanding Dysfunctions in Financial Markets’’ No. 8, 2012, s. 1212–1228.
Harvey A., Oryshchenko V., Kernel density estimation for time series data, „International Journal of Forecasting, Special Section 1: The Predictability of Financial Markets’’ No. 1, 2012, s. 3–14.
Jajuga K., Wykład przedstawiony przez Profesora Krzysztofa Jajugę podczas uroczystości nadania tytułu doktora honoris causa Uniwersytetu Ekonomicznego w Krakowie, 2012, https://www.ue.wroc.pl/p/wyklad_prof_jajuga.doc
Jajuga K., Zarządzanie ryzykiem, PWN, Warszawa 2007
Jeon J., Taylor J. W., Using CAViaR models with implied volatility for Value at Risk estimation, „Journal of Forecasting’’ No. 1, 2013, s. 62–74.
J. P. Morgan/Reuters, „Risk Metrics TM – technical document”, Scribd 1996, https:// pl.scribd.com/document/211005929/J-P-Morgan-Reuters-RiskMetrics
Koziorowska K., Warunkowa wartość zagrożona jako narzędzie do zarządzania ryzykiem inwestycji finansowych, Wydawnictwo UE w Poznaniu, Poznań 2011.
Lee H. et al., Multifractal Value at Risk model, „Physica A: Statistical Mechanics and its Applications’’ No. C, 2016, s. 113–122.
Lewis-Beck M. S. et al., The British general election: synthetic forecasts, „Electoral Studies’’ No. C, 2016, s. 264–268.
Mandelbrot B., The variation of certain speculative prices, „The Journal of Business’’ No. 36, 1965, s. 394–394.
McAleer M. et al., GFC-robust risk management strategies under the Basel Accord, „International Review of Economics & Finance’’ No. C, 2013, 97–111.
Nelson D. B., Conditional heteroskedasticity in asset returns: a new approach, „Econometrica’’ No. 2, 1991, s. 347–370.
Nieto M., Ruiz E., Frontiers in VaR forecasting and backtesting, „International Journal of Forecasting’’ No. 2, 2016, s. 475–501.
Piontek K., Modelowanie efektu dźwigni w finansowych szeregach czasowych, Katedra Inwestycji Finansowych i Ubezpieczeń Akademia Ekonomiczna we Wrocławiu, Wrocław 2004, http://www.kpiontek.ue.wroc.pl/dzwignia.pdf
Pritsker M., The hidden dangers of historical simulation, „Journal of Banking & Finance’’ No. 2, 2006, s. 561–582.
Rabemananjara R., Zakoian J. M., Threshold ARCH models and asymmetries in volatility, „Journal of Applied Econometrics’’ No. 1,1993, s. 31–49.
Rapach D. E., Strauss J. K., Forecasting US employment growth using forecast combining methods, „Journal of Forecasting’’ No. 1, 2008, s. 75–93.
Ratuszny E., Risk modeling of commodities using CAViaR models, the encompassing method and the combined forecasts, „Dynamic Econometric Models’’ No. 15, 2015, s. 129–156.
Rockafellar R. T., Uryasev S., Optimization of conditional Value at Risk, „Journal of Risk’’ No. 2, 2000, s. 21–41.
Rothschild D., Combining forecasts for elections: Accurate, relevant, and timely, „International Journal of Forecasting’’ No. 3, 2015, s. 952–964.
Sentana E., Quadratic ARCH models, „The Review of Economic Studies’’ No. 4, 1995, s. 639–661.