New data sources in tourism: research on opinions from social media platforms in administrative-legal, economic, and social perspectives

Authors

DOI:

https://doi.org/10.61016/TZAP-2956-8048-19

Keywords:

big data, web scraping, tourism, JEL K21, JEL K23

Abstract

The article analyzes new data sources in tourism, concentrating on opinions from social networking sites, examining them from administrative-legal, economic, and social perspectives. Growing big data sets have evolved from the classic 3V model (volume, variety, velocity) to expanded concepts, emphasizing the importance of data reliability (veracity, validity) and value. Although big data analysis yields benefits, it simultaneously poses serious threats to privacy and the risk of re-identification of individuals, necessitating cohesive and ethical regulations.
In the legal context, the GDPR (RODO) is the paramount EU act concerning data protection. In Poland, the basis is the Act on Public Statistics, permitting the processing of personal data for the statistical purpose of monitoring tourism. At the EU level, Regulation (WE) No 223/2009 allows national statistical offices to obtain absolutely necessary data free of charge from private data holders if its use significantly reduces the burden on businesses.
Furthermore, Regulation (UE) 2024/1028 (effective May 2026) imposes an obligation on short-term rental platform providers to transmit data concerning their activity monthly. Web scraping may prove to be the key method for acquiring big data for public statistics. This technique automates the collection of information from websites, accelerates data gathering, and allows for near real-time analysis. Scraping is a valuable resource supplementing official statistics, allowing for the assessment of the quality of the offering and the forecasting of tourist behavior. The empirical part of the article utilized web scraping to download 4,480 reviews from Google Maps for the Wawel Royal Castle. The experiment confirmed that extending the waiting time for a visit significantly lowers the rating provided. These results emphasize the crucial importance of efficient management of tourist traffic for visitor satisfaction. Future research should aim to integrate public data with scraped data, which has been termed the “Tourism Demand Horizon”.

Downloads

Download data is not yet available.

References

Barczak, M. (2025). Application of Big Data in Tourism Demand Research. Sofia: Professor Marin Drinov Publishing House of Bulgarian Academy of Sciences.

Barczak, M., Brudnicki, R., & Wierzbiańska, S. (2023). Koncepcja metodologii badań ruchu turystycznego dla województwa kujawsko-pomorskiego uwzględniająca nowoczesne technologie pozyskiwania danych źródłowych. Urząd Marszałkowski Województwa Kujawsko-Pomorskiego.

Boboc, C.R., Babaligea, A.N., Ghita, S.I. and Saseanu, A. S. (2025).

Leveraging Web-scraping for Tourism Data Analysis: A Case Study on Romania. In: C. Vasiliu, D.C. Dabija, A.

Tziner, D. Pleșea, V. Dinu, eds. 2025. 11th BASIQ International Conference on New Trends in Sustainable Business and Consumption. Oradea, Romania, 26–28 June 2025. Bucharest: Editura ASE, 174–181.

Borek D., Management of short-term rental (2023) – regulation or deregulation? – Example of Poland (w:) Sustainable Development - Circular Economy, Critical Infrastructures, Green Transition red. S. Baltowa, A. Cholakova.

Borek D., (2024). Regulacja najmu krótkoterminowego (short-time rental STR) na poziomie krajowym i unijnym jako determinanta zarządzania obiektami zakwaterowania (w:) Europejski Przegląd Prawa i Stosunków Międzynarodowych nr 2/2024/70.

Cavallo, A., & Rigobon, R. (2016). The Billion Prices Project: Using online prices for measurement and research. Journal of Economic Perspectives, 30(2), 151–178.

Cierpiał-Wolan, M., & Stateva, G. (2023). Ocena metod integracji danych dotyczących turystyki z uwzględnieniem big data.

Wiadomości Statystyczne. The Polish Statistician, 68(12), 25–48.

Juszczak, A. (2021). Zastosowanie danych scrapowanych w pomiarze dynamiki cen. Folia Oeconomica. Acta Universitatis Lodziensis, 1(352).

Kachniewska, M. (2014). Big data analysis jako źródło przewagi konkurencyjnej przedsiębiorstw i regionów turystycznych.

Folia Turistica, (32), 35–54.

Stępień, A. (2018). Bezpieczeństwo danych osobowych w cyberprzestrzeni – Big Data. Przedsiębiorczość i Zarządzanie, 19(2/3), 56.

Macias, P., & Stelmasiak, D. (2019). Food inflation nowcasting with web scraped data (NBP Working Paper No. 302).

Narodowy Bank Polski, Warsaw.

Maślankowski, J. (2019). Pozyskiwanie i analiza danych na temat ofert pracy z wykorzystaniem big data.

Wiadomości Statystyczne. The Polish Statistician, 64(9), 60–74.

Tene, O. (2011). Privacy: The new generations. International Data Privacy Law, 1(1), 15–27.

Thakur, S., Jha, R., Dalawat, M., Jha, P., Khandare, A. (2025).

Scraping Data from Google Maps: Comparisons and Experimentations. In: Ghinea, G., Semwal, V.B., Khandare, A. (eds) Intelligent Computing and Networking. IC-ICN 2024. Lecture Notes in Networks and Systems, vol 1172.

Springer, Singapore. https://doi.org/10.1007/978-981-97- 8631-2_14.

Vankevich, A., & Kalinouskaya, I. (2021). Better understanding of the labor market using big data. Ekonomia i Prawo.

Economics and Law, 20(3), 677–692.

Wąsowicz-Zaborek, E. (2019). Treści generowane przez użytkowników Internetu jako źródło wiedzy o wizerunku miejsca docelowego podróży na przykładzie miasta Kołobrzeg. Folia Turistica, nr 53.

Woźniczka, J. (2018). Big data w marketingu: Szanse i zagrożenia. Studia Oeconomica Posnaniensia, 6(6).

Published

2026-01-16

How to Cite

Barczak, M., Borek, D., & Pawlak, M. (2026). New data sources in tourism: research on opinions from social media platforms in administrative-legal, economic, and social perspectives. Tourism - Management, Administration, Law, (5), 8–16. https://doi.org/10.61016/TZAP-2956-8048-19