Main Article Content
Abstract
This publication aims to map the environmental sustainability discourse on Twitter. This will be achieved through two commonly used methods of natural language processing; topic modelling, which is used to uncover hidden themes in the document collection, and sentiment analysis, which is used to detect the attitudes of the authors of the text towards a particular attitude. The exploration of communication can provide an opportunity to find a solution to a multifaceted problem in order to protect our common future.
Keywords
Article Details
The author of the article declares that the submitted article does not infringe the copyrights of third parties. The author agrees to subject the article to the review procedure and to make editorial changes. The author transfers, free of charge, to SGH Publishing House the author's economic rights to the work in the fields of exploitation listed in the Article 50 of the Act of 4 February 1994 on Copyright and Related Rights – provided that the work has been accepted for publication and published.
SGH Publishing House holds economic copyrights to all content of the journal. Placing the text of the article in a repository, on the author's home page or on any other page is allowed as long as it does not involve obtaining economic benefits, and the text will be provided with source information (including the title, year, number and internet address of the journal).
References
- Attenborough, D., & Hughes, J. (2020). A Life on Our Planet: My Witness Statement and a Vision for the Future. London: Ebury Publishing.
- Alexandratos, N., & Bruinsma, J. (2012). World agriculture towards 2030/2050: the 2012 revision. ESA Working paper No. 12–03. Rome, FAO. Retrieved from: http:// www.fao.org/3/ap106e/ap106e.pdf (accessed: 29.03.2021).
- Ballestar, M. T., Cuerdo-Mir, M., & Freire-Rubio, M. T. (2020). The Concept of Sustainability on Social Media: A Social Listening Approach. Sustainability, 12 (5), 2122. MDPI AG. http://dx.doi.org/10.3390/su12052122
- Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent Dirichlet Allocation. Journal of Machine Learning Research, 3, 993–1022.
- Cody, E. M., Reagan, A. J., Mitchell, L., Dodds, P. S., & Danforth, C. M. (2015). Climate Change Sentiment on Twitter: An Unsolicited Public Opinion Poll. PLoS ONE, 10 (8), e0136092. DOI:10.1371/journal.pone.0136092
- Dahal, B., Kumar, S. A. P., & Li, Z. (2019). Topic modelling and sentiment analysis of global climate change tweets. Soc. Netw. Anal. Min., 9 (24) https://doi.org/10.1007/ s13278-019-0568–8
- Dasgupta, P., & McKenzie, E. (2020). The Dasgupta Review – Independent Review on the Economics of Biodiversity Interim Report. Retrieved from: https://assets.publishing. service.gov.uk/government/uploads/system/uploads/attachment_data/file/882222/ The_Economics_of_Biodiversity_The_Dasgupta_Review_Interim_Report.pdf (accessed: 28.01.2021).
- Denny, M., & Spirling, A. (2018). Text Preprocessing or Unsupervised Learning: Why It Matters, When It Misleads, And What to Do About It. Political Analysis, 26 (2), 168–189. DOI:10.1017/pan.2017.44
- Drews, S., & Miklós, A. (2016). Degrowth: A “Missile Word” That Backfires? Ecological Economics, 126, 182–187. DOI: 10.1016/j.ecolecon.2016.04.001
- Drews, S., & Reese, G. (2018). “Degrowth” vs. Other Types of Growth: Labelling Affects Emotions but Not Attitudes”. Environmental Communication, 12 (6), 763–772. DOI: 10.1080/17524032.2018.1472127
- Evans, J. A., & Aceves, P. (2016). Machine translation: mining text for social theory.
- Annu. Rev. Sociol., 42 (1), 21–50. https://doi.org/10.1146/annurev-soc-081715–074206
- FABLE (2020). Pathways to Sustainable Land-Use and Food Systems. 2020 Report of the FABLE Consortium. Laxenburg and Paris: International Institute for Applied Systems Analysis (IIASA) and Sustainable Development Solutions Network (SDSN). https:// doi.org/10.22022/ESM/12-2020.16896
- Furman, E., Häyhä, T., & Hirvilammi, T. (2018) A future the planet can accommodate.
- SKYKE & SITRA, 2. ISBN: 978-952-11-4938-2. Retrieved from: https://helda.helsinki.fi/bitstream/handle/10138/235418/PB_A-future-the-planet-can-accommodate.pdf?sequence=1 (accessed: 08.03.2021).
- Hutto, C. J., & Gilbert, E. (2015). VADER: A Parsimonious Rule-based Model for Sentiment Analysis of Social Media Text. Proceedings of the 8th International Conference on Weblogs and Social Media, ICWSM 2014.
- Intergovernmental Panel on Climate Change – The Fifth and the Sixth Assessment Cycle (2020). Retrieved from: https://www.ipcc.ch/site/assets/uploads/2020/05/2020-AC6_en.pdf (accessed: 06.03.2021).
- Kirilenko, A. P., & Stepchenkova, S. O. (2014). Public microblogging on climate change: One Year off Twitter worldwide. Global Environ. Change. https://dx.doi.org/10.1016/j. gloenvcha.2014.02.008
- Németh, R., Katona, E. R., & Kmetty, Z. (2020). Az automatizált szövegelemzés perspektívája a társadalomtudományokban [Perspectives on automated text analysis in the social sciences]. SZOCIOLÓGIAI SZEMLE, 30 (1), 44–62. ISSN 1216–2051.
- Nik-Bakht, M., & El-Diraby, T. E. (2016). Sus-tweet-ability: Exposing public communities perspective on sustainability of urban infrastructure through online social media. International Journal of Human-Computer Studies, 89, 54–72, ISSN 1071–5819. https:// doi.org/10.1016/j.ijhcs.2015.11.002
- Radi, S. A., & Shokouhyar, S. (2021). Toward consumer perception of cellphones sustainability: A social media analytics. Sustainable Production and Consumption, 25,217–233, ISSN 2352–5509. https://doi.org/10.1016/j.spc.2020.08.012
- Raworth, K. (2017). Doughnut economics: seven ways to think like a 21st-century economist. London: Random House.
- Rockström, J., & Klum, M. (2015). Big world, small planet: Abundance within planetary boundaries. USA: Yale University Press.
- Stevens, K., Kegelmeyer, P., Andrzejewski, D., & Buttler, D. (2012). Exploring topic coherence over many models and many topics. Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL ‘12). Association for Computational Linguistics, USA, 952–961.
References
Attenborough, D., & Hughes, J. (2020). A Life on Our Planet: My Witness Statement and a Vision for the Future. London: Ebury Publishing.
Alexandratos, N., & Bruinsma, J. (2012). World agriculture towards 2030/2050: the 2012 revision. ESA Working paper No. 12–03. Rome, FAO. Retrieved from: http:// www.fao.org/3/ap106e/ap106e.pdf (accessed: 29.03.2021).
Ballestar, M. T., Cuerdo-Mir, M., & Freire-Rubio, M. T. (2020). The Concept of Sustainability on Social Media: A Social Listening Approach. Sustainability, 12 (5), 2122. MDPI AG. http://dx.doi.org/10.3390/su12052122
Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent Dirichlet Allocation. Journal of Machine Learning Research, 3, 993–1022.
Cody, E. M., Reagan, A. J., Mitchell, L., Dodds, P. S., & Danforth, C. M. (2015). Climate Change Sentiment on Twitter: An Unsolicited Public Opinion Poll. PLoS ONE, 10 (8), e0136092. DOI:10.1371/journal.pone.0136092
Dahal, B., Kumar, S. A. P., & Li, Z. (2019). Topic modelling and sentiment analysis of global climate change tweets. Soc. Netw. Anal. Min., 9 (24) https://doi.org/10.1007/ s13278-019-0568–8
Dasgupta, P., & McKenzie, E. (2020). The Dasgupta Review – Independent Review on the Economics of Biodiversity Interim Report. Retrieved from: https://assets.publishing. service.gov.uk/government/uploads/system/uploads/attachment_data/file/882222/ The_Economics_of_Biodiversity_The_Dasgupta_Review_Interim_Report.pdf (accessed: 28.01.2021).
Denny, M., & Spirling, A. (2018). Text Preprocessing or Unsupervised Learning: Why It Matters, When It Misleads, And What to Do About It. Political Analysis, 26 (2), 168–189. DOI:10.1017/pan.2017.44
Drews, S., & Miklós, A. (2016). Degrowth: A “Missile Word” That Backfires? Ecological Economics, 126, 182–187. DOI: 10.1016/j.ecolecon.2016.04.001
Drews, S., & Reese, G. (2018). “Degrowth” vs. Other Types of Growth: Labelling Affects Emotions but Not Attitudes”. Environmental Communication, 12 (6), 763–772. DOI: 10.1080/17524032.2018.1472127
Evans, J. A., & Aceves, P. (2016). Machine translation: mining text for social theory.
Annu. Rev. Sociol., 42 (1), 21–50. https://doi.org/10.1146/annurev-soc-081715–074206
FABLE (2020). Pathways to Sustainable Land-Use and Food Systems. 2020 Report of the FABLE Consortium. Laxenburg and Paris: International Institute for Applied Systems Analysis (IIASA) and Sustainable Development Solutions Network (SDSN). https:// doi.org/10.22022/ESM/12-2020.16896
Furman, E., Häyhä, T., & Hirvilammi, T. (2018) A future the planet can accommodate.
SKYKE & SITRA, 2. ISBN: 978-952-11-4938-2. Retrieved from: https://helda.helsinki.fi/bitstream/handle/10138/235418/PB_A-future-the-planet-can-accommodate.pdf?sequence=1 (accessed: 08.03.2021).
Hutto, C. J., & Gilbert, E. (2015). VADER: A Parsimonious Rule-based Model for Sentiment Analysis of Social Media Text. Proceedings of the 8th International Conference on Weblogs and Social Media, ICWSM 2014.
Intergovernmental Panel on Climate Change – The Fifth and the Sixth Assessment Cycle (2020). Retrieved from: https://www.ipcc.ch/site/assets/uploads/2020/05/2020-AC6_en.pdf (accessed: 06.03.2021).
Kirilenko, A. P., & Stepchenkova, S. O. (2014). Public microblogging on climate change: One Year off Twitter worldwide. Global Environ. Change. https://dx.doi.org/10.1016/j. gloenvcha.2014.02.008
Németh, R., Katona, E. R., & Kmetty, Z. (2020). Az automatizált szövegelemzés perspektívája a társadalomtudományokban [Perspectives on automated text analysis in the social sciences]. SZOCIOLÓGIAI SZEMLE, 30 (1), 44–62. ISSN 1216–2051.
Nik-Bakht, M., & El-Diraby, T. E. (2016). Sus-tweet-ability: Exposing public communities perspective on sustainability of urban infrastructure through online social media. International Journal of Human-Computer Studies, 89, 54–72, ISSN 1071–5819. https:// doi.org/10.1016/j.ijhcs.2015.11.002
Radi, S. A., & Shokouhyar, S. (2021). Toward consumer perception of cellphones sustainability: A social media analytics. Sustainable Production and Consumption, 25,217–233, ISSN 2352–5509. https://doi.org/10.1016/j.spc.2020.08.012
Raworth, K. (2017). Doughnut economics: seven ways to think like a 21st-century economist. London: Random House.
Rockström, J., & Klum, M. (2015). Big world, small planet: Abundance within planetary boundaries. USA: Yale University Press.
Stevens, K., Kegelmeyer, P., Andrzejewski, D., & Buttler, D. (2012). Exploring topic coherence over many models and many topics. Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL ‘12). Association for Computational Linguistics, USA, 952–961.