Treść głównego artykułu

Abstrakt

The purpose of this article is primarily to introduce the topic of scientific uncertainty to the wider context of economics and management. Scientific uncertainty is one of the manifestations of irreducible uncertainty and reflection on it should enable better decision making. An entity that bases its operation on current scientific research, which depreciates over time and ultimately leads to erroneous decisions, is referred to as the “loser”. The text indicates estimation of potential scale of this problem supplemented by an outline of sociological difficulties identified in the analysis of the process of building scientific statements. The article ends with a sketch of the answer to the question “how to act in the context of scientific uncertainty?”

Szczegóły artykułu

Jak cytować
Malinowski, G. (2019). Uncertainty of science and decision-making – problems with evidence-based policy. Edukacja Ekonomistów I Menedżerów, 54(4), 9–29. Pobrano z https://econjournals.sgh.waw.pl/EEiM/article/view/1828

Referencje

    1. Aarts, A.A., Anderson, J., Anderson, C. (2015). Estimating the reproducibility of psychological science. Science, 349(6251), aac4716-1-aac4716–8.
    2. Ahteensuu, M. (2013). The precautionary principle and the justifiability of three imperatives. Homo Oeconomicus, 30(1), 17–36.
    3. Begley, C.G. (2013). Reproducibility: Six red flags for suspect work. Nature, 497(7450),433–434.
    4. Bohannon, J., Koch, D., Homm, P., Driehaus, A. (2015). Chocolate with high cocoa content as a weight – loss accelerator. International Archives of Medicine, 8(55).
    5. Chang, A., Li, P. (2015). Is economic research replicable? Sixty published papers from thirteen journals say “Usually Not”, Finance and Economics Discussion Series 2015–083.
    6. Washington: Board of Governors of the Federal Reserve System, http://dx.doi.org/10.17016/FEDS.2015.083.
    7. Gigerenzer, G. (2014). Risk savvy. Penguin Random House.
    8. Góralczyk, B. (2018). Wielki renesans. Warsaw: Wydawnictwo Akademickie Dialog.
    9. Ioannidis, J.P.A. (2005). Why most published research findings are false. PLoS Med, 2(8): e124, 696–701.
    10. Ioannidis, J.P.A., Stanley, T.D., Doucouliagos, H. (2017). The power of bias in economics research. The Economic Journal, 127(10), F236-F265.
    11. Jablonowski, M. (2006). Precautionary risk management. New York: Palgrave Macmillan.
    12. Koźmiński, A.K. (2008). Zarządzanie w warunkach niepewności. Warsaw: Polish Scientific Publishers PWN.
    13. Koźmiński, A.K., Latusek-Jurczak, D. (2011). Rozwój teorii organizacji. Warsaw: Wolters Kluwer Polska.
    14. Malinowski, G.M. (2017). Renesans strategii – czyli o niemożliwości uprawiania Evidence based Policy. Organizacja i Zarządzanie, 1992, 265–284.
    15. Malinowski, G.M. (2018). Zasada ostrożności, czyli heurystyka strachu oraz heurystyka odwagi w kontekście polityki gospodarczej. Prakseologia, 160, 291–332.
    16. Lemons, J., Shrader-Frechette, K., Cranor, C. (1997). The precautionary principle:
    17. Scientific uncertainty and type I and type II errors. Foundations of Science, 2, 207–236.
    18. Lo, Ch. (2009). Risks, scientific uncertainty and the approach of applying precautionary principle. Medicine and Law, 28, 283–300.
    19. Potocki, T., Opolski, K. (2015). Decyzje w obliczu „niepewnych ryzyk” – rola heurystyk i nurtu racjonalności adaptacyjnej. Finanse, 1(8), 43–70.
    20. Ravetz, J. (2003). The post – normal science of precaution. Futures, 36, 347–357.
    21. Silberzahn, R., Uhlmann, E.L., Martin, D. (2017). Many analyst, one dataset: Making transparent how variations in analytical choices affect results. Advances in Methods and Practices in Psychological Science, 1(3), 337–356.
    22. Taleb, N. (2016). The logic of risk taking. Retrieved from: http://www.fooledbyrandomness.com/rationality. pdf (access: 30.01.2019).
    23. The Economist (2013). Trouble at the lab. October 19th, 26–30.
    24. Weiss, Ch. (2003). Expressing scientific uncertainty. Law, Probability and Risk, 2, 25–46.