The Role of Creativeness in Business Analysis in the Context of Marketing Data Analysis
DOI:
https://doi.org/10.33119/SIP.2018.162.7Keywords:
creativeness, competences, business analytics, marketing data analysisAbstract
As the interest in business analytics was growing, there was a demand for specialists in the area called data science, i.e. the science devoted to data and their analysis (algorithms, tools and applications). In the era of the dynamic development and popularization of information technology, it is a prerequisite for the market operation; and competitiveness is determined be the creative application of available data and technologies. The aim of this article is to indicate the possibilities and areas of creative activities in the process of data analysis. These activities are meant to create value added for the company and customers. The presented considerations are based on a standard model of data analysis process CRISP-DM, and the conclusions are supported by the author’s observations and experience acquired in the course of implementation of the project exploring the marketing data of retail shops in Poland.
Downloads
References
2. Dewett T., Understanding the Relationship Between Information Technology and Creativity in Organizations, „Creativity Research Journal” 2003, no. 15, s. 167–182.
3. Ibrahim B., DeMiranda M. A., Siller T. J., The Correlation Between Creativity and Engineering Knowledge Among Engineering Undergraduate Students, „Institute of Electrical and Electronics Engineers Inc.” 2016, no. 38, DOI: 10.1109/ICEED.2016.7856090.
4. Jelonek D., Rola klienta w rozwoju organizacji kreatywnej, „Studia Ekonomiczne. Zeszyty Naukowe Uniwersytetu Ekonomicznego w Katowicach” 2012, nr 113.
5. Kanter R. M., eVolve: Succeeding in the Digital Culture of Tomorrow, Harvard Business School Press, Boston 2001, s. 261.
6. Kulikowski K., Zastosowanie modelu Cross Industry Standard Process for Data Mining (CRISP-DM) w badaniach postaw i opinii pracowników, „Zeszyty Naukowe Politechniki Śląskiej”, Seria: „Organizacja i Zarządzanie” 2015, no. 82, s. 111–121.
7. Leonard D., Barton M., Knowledge and the Management of Creativity and Innovation, w: The Oxford Handbook of Innovation Management, red. M. Dodgson, D. Gann, N. Phillips, Oxford University Press, 2014.
8. Miron E., Erez M., Naveh E., Do Personal Characteristics and Cultural Values that Promote Innovation, Quality, and Efficiency Compete or Complement Each Other? „Journal of Organizational Behavior” 2004, no. 25, s. 175–199.
9. Mitchell T., Decision Tree Learning, „Machine Learning” 1997, no. 414, McGraw Hill.
10. Nęcka E., Twórczość, w: Psychologia. Podręcznik akademicki, t. 2, red. J. Strelau, Gdańsk 2000.
11. Pawełoszek I., Wieczorkowski J., Big Data as a Business Opportunity: An Educational Perspective, „Computer Science and Information Systems (FedCSIS)” 2015, Federated Conference on IEEE.
12. Shearer C., The CRISP-DM Model: The New Blueprint for Data Mining, „Journal of Data Warehousing” 2000, no. 5, s. 13–22.
13. Smith A. M., Mateas M., Knowledge-Level Creativity in Game Design, Proceedings of the 2nd International Conference on Computational Creativity ICCC, 2011.
14. Sokół A., Figurska I., Creativity As One of the Core Competencies of Studying Knowledge Workers, „Entrepreneurship and Sustainability Issues” 2017, no. 5 (1), s. 23–35.
15. Stein M. I., Creativity and Culture, „Journal of Psychology” 1953, vol. 36.
16. Subashini R., Rita S., Vivek M., The Role of ICTs in Knowledge Management (KM) for Organizational Effectiveness, „Communications in Computer and Information Science” 2012, vol. 270, s. 542–549, http://dx.doi.org/10.1007/978–3–642–29216-3_59 (17.04.2018).
17. Szczepańska-Woszczyna K., Kompetencje menedżerskie w obszarze innowacyjności i kreatywności, ZS WSH, „Zarządzanie” 2014, nr 1, s. 101–110.
18. Tabakow M., Korczak J., Franczyk B., Big Data – definicje, wyzwania i technologie informatyczne, „Informatyka Ekonomiczna”2014, nr 1 (31).
19. Ziora L., The Sentiment Analysis As a Tool of Business Analytics in Contemporary Organizations, „Studia Ekonomiczne, Zeszyty Naukowe Uniwersytetu Ekonomicznego w Katowicach” 2016, nr 281.
Materiały internetowe
1. Baykara B., Impact of Evaluation Methods on Decision Tree Accuracy, University of Tampere, Finland 2015, http://tampub.uta.fi/bitstream/handle/10024/97207/GRADU-1432814149.pdf;sequence=1 (17.04.2018).
2. Data Mining Processes, 2012, http://www.zentut.com/data-mining/data-mining-processes/(17.04.2018).
3. Demchenko Y., Belloum A., Wiktorski T., EDISON Data Science Framework: Part 1. Data Science Competence Framework (CF-DS) Release 2, 2017, http://edison-project.eu/sites/edison-project.eu/files/filefield_paths/edison_cf-ds-release2‑v08_0.pdf (17.04.2018).
4. Ferlic K., Creativity Perspective on Multidimensional and Infinitely Dimensional, 2006, http://ryuc.info/common/creativity_perspective/cp_on_multidimensional.htm (17.04.2018).
5. Harris H. D., Murphy S. P., Vaisman M., Analysing the Analysers. O’Reilly Strata Survey, 2013, http://cdn.oreillystatic.com/oreilly/radarreport/0636920029014/Analyzing_the_Analyzers.pdf (17.04.2018).
6. Jadczak A., 9 kierunków kształcących specjalistów od data science w Polsce, 2015 https://itwiz.pl/9‑kierunkow-ksztalcacych-specjalistow-od-data-science-polsce/ (17.04.2018).
7. Neiman L., Creativity at Work: What is Creativity?, 2012, http://www.creativityatwork.com/2014/02/17/what-is-creativity/ (17.04.2018).